Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Symmetry problem


Author: A. G. Ramm
Journal: Proc. Amer. Math. Soc. 141 (2013), 515-521
MSC (2010): Primary 35J05, 31B20
DOI: https://doi.org/10.1090/S0002-9939-2012-11400-5
Published electronically: May 31, 2012
MathSciNet review: 2996955
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A novel approach to an old symmetry problem is developed. A new proof is given for the following symmetry problem, studied earlier: if $ \Delta u=1$ in $ D\subset \mathbb{R}^3$, $ u=0$ on $ S$, the boundary of $ D$, and $ u_N=const$ on $ S$, then $ S$ is a sphere. It is assumed that $ S$ is a Lipschitz surface homeomorphic to a sphere. This result has been proved in different ways by various authors. Our proof is based on a simple new idea.


References [Enhancements On Off] (What's this?)

  • 1. A. D. Alexandrov, A characteristic property of a sphere, Ann. di Matem., 58 (1962), 303-315. MR 0143162 (26:722)
  • 2. T. Amdeberhan, Two symmetry problems in potential theory, Electronic Journ. of Diff. Eqs., 43 (2001), 1-5. MR 1836811 (2002e:35171)
  • 3. H. Bateman, A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher transcendental functions, Vol. 1, McGraw-Hill, New York, 1953. MR 0058756 (15:419i)
  • 4. T. Chatelain and A. Henrot, Some results about Schiffer's conjectures, Inverse Problems, 15 (1999), 647-658. MR 1696934 (2000e:35019)
  • 5. N. S. Hoang and A. G. Ramm, Symmetry problems. II, Annal. Polon. Math., 96, N1 (2009), 61-64. MR 2506593 (2010f:35046)
  • 6. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, 1968. MR 0220560 (36:3618)
  • 7. A. A. Kosmodem'yanskiĭ, A converse of the mean value theorem for harmonic functions, Russ. Math. Surveys, 36, N5 (1981), 159-160. MR 637445 (84d:31001)
  • 8. A. G. Ramm, Scattering by obstacles, D. Reidel, Dordrecht, 1986. MR 847716 (87k:35197)
  • 9. A. G. Ramm, The Pompeiu problem, Applicable Analysis, 64, N1-2 (1997), 19-26. MR 1460069 (98d:35036)
  • 10. A. G. Ramm, Necessary and sufficient condition for a domain, which fails to have Pompeiu property, to be a ball, Journ. of Inverse and Ill-Posed Probl., 6, N2 (1998), 165-171. MR 1637368 (99f:35026)
  • 11. A. G. Ramm, Inverse Problems, Springer, New York, 2005. MR 2838778
  • 12. A. G. Ramm, A symmetry problem, Ann. Polon. Math., 92 (2007), 49-54. MR 2318510 (2008d:31003)
  • 13. A. G. Ramm and E. Shifrin, Symmetry problems in the elasticity theory problem for plane cracks of normal rapture, Journ. of Appl. Math. and Mech., 69 (2005), 127-134. MR 2158714 (2006c:74084)
  • 14. J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. Anal., 43 (1971), 304-318. MR 0333220 (48:11545)
  • 15. H. Weinberger, Remark on the preceding paper of Serrin, Arch. Rat. Mech. Anal., 43 (1971), 319-320. MR 0333221 (48:11546)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J05, 31B20

Retrieve articles in all journals with MSC (2010): 35J05, 31B20


Additional Information

A. G. Ramm
Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506-2602
Email: ramm@math.ksu.edu

DOI: https://doi.org/10.1090/S0002-9939-2012-11400-5
Keywords: Symmetry problems, potential theory.
Received by editor(s): December 6, 2010
Received by editor(s) in revised form: June 25, 2011
Published electronically: May 31, 2012
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society