Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On the regularity of the $ 2+1$ dimensional equivariant Skyrme model


Authors: Dan-Andrei Geba and Daniel da Silva
Journal: Proc. Amer. Math. Soc. 141 (2013), 2105-2115
MSC (2010): Primary 35L70, 81T13
Published electronically: February 7, 2013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: One of the most interesting open problems concerning the Skyrme model of nuclear physics is the regularity of its solutions. In this article, we study $ 2+1$ dimensional equivariant Skyrme maps, for which we prove, using the method of multipliers, that the energy does not concentrate. This is one of the important steps towards a global regularity theory.


References [Enhancements On Off] (What's this?)

  • 1. P. Bizoń, T. Chmaj, and A. Rostworowski, Asymptotic stability of the skyrmion, Phys. Rev. D 75 (2007), no. 12, 121702-121706. MR 2326835 (2008c:81110)
  • 2. P. D'Ancona and V. Georgiev, Wave maps and ill-posedness of their Cauchy problem, New trends in the theory of hyperbolic equations, Oper. Theory Adv. Appl., vol. 159, Birkhäuser, Basel, 2005, pp. 1-111. MR 2175916
  • 3. D.-A. Geba, K. Nakanishi, and S. G. Rajeev, Global well-posedness and scattering for Skyrme wave maps, Commun. Pure Appl. Anal. 11 (2012), no. 5, 1923-1933. MR 2911118
  • 4. M. Gell-Mann and M. Lévy, The axial vector current in beta decay, Nuovo Cimento (10) 16 (1960), 705-726. MR 0140316 (25:3738)
  • 5. F. Gürsey, On the symmetries of strong and weak interactions, Nuovo Cimento (10) 16 (1960), 230-240. MR 0118418 (22:9191)
  • 6. -, On the structure and parity of weak interaction currents, Ann. Physics 12 (1961), no. 1, 91-117.
  • 7. F. Hélein, Harmonic maps, conservation laws and moving frames, second ed., Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002. Translated from the 1996 French original, with a foreword by James Eells. MR 1913803 (2003g:58024)
  • 8. J. Krieger, Global regularity and singularity development for wave maps, Surveys in differential geometry. Vol. XII. Geometric flows, Surv. Differ. Geom., vol. 12, Int. Press, Somerville, MA, 2008, pp. 167-201. MR 2488946 (2010h:58044)
  • 9. J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543-615. MR 2372807 (2009b:58061)
  • 10. A. N. Leznov, B. Piette, and W. J. Zakrzewski, On the integrability of pure Skyrme models in two dimensions, J. Math. Phys. 38 (1997), no. 6, 3007-3011. MR 1449544 (98d:81047)
  • 11. D. Li, Global wellposedness of hedgehog solutions for the $ (3+1)$ Skyrme model, preprint, 2011.
  • 12. F. Lin and Y. Yang, Existence of two-dimensional skyrmions via the concentration-compactness method, Comm. Pure Appl. Math. 57 (2004), no. 10, 1332-1351. MR 2070206 (2005d:58034)
  • 13. -, Analysis on Faddeev knots and Skyrme solitons: recent progress and open problems, Perspectives in nonlinear partial differential equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 319-344. MR 2376667 (2009c:58027)
  • 14. P. Raphael and I. Rodnianski, Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1-122. MR 2929728
  • 15. I. Rodnianski and J. Sterbenz, On the formation of singularities in the critical $ {\rm O}(3)$ $ \sigma $-model, Ann. of Math. (2) 172 (2010), no. 1, 187-242. MR 2680419 (2011i:58023)
  • 16. J. Shatah, Weak solutions and development of singularities of the $ {\rm SU}(2)$ $ \sigma $-model, Comm. Pure Appl. Math. 41 (1988), no. 4, 459-469. MR 933231 (89f:58044)
  • 17. J. Shatah and A. Tahvildar-Zadeh, Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds, Comm. Pure Appl. Math. 45 (1992), no. 8, 947-971. MR 1168115 (93c:58056)
  • 18. T. H. R. Skyrme, A non-linear field theory, Proc. Roy. Soc. London Ser. A 260 (1961), 127-138. MR 0128862 (23:B1899)
  • 19. -, Particle states of a quantized meson field, Proc. Roy. Soc. Ser. A 262 (1961), 237-245. MR 0153323 (27:3291)
  • 20. -, A unified field theory of mesons and baryons, Nuclear Phys. 31 (1962), 556-569. MR 0138394 (25:1841)
  • 21. D. Tataru, The wave maps equation, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 2, 185-204. MR 2043751 (2005h:35245)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35L70, 81T13

Retrieve articles in all journals with MSC (2010): 35L70, 81T13


Additional Information

Dan-Andrei Geba
Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627

Daniel da Silva
Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627

DOI: http://dx.doi.org/10.1090/S0002-9939-2013-11865-4
PII: S 0002-9939(2013)11865-4
Keywords: Skyrme model, global existence, nonconcentration of energy
Received by editor(s): October 6, 2011
Published electronically: February 7, 2013
Communicated by: James E. Colliander
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.