Asymptotic stability of the wave equation on compact manifolds and locally distributed viscoelastic dissipation

Authors:
Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti and Flávio A. F. Nascimento

Journal:
Proc. Amer. Math. Soc. **141** (2013), 3183-3193

MSC (2010):
Primary 35L05, 34Dxx, 35A27

Published electronically:
May 29, 2013

MathSciNet review:
3068971

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the asymptotic stability of the wave equation on a compact Riemannian manifold subject to locally distributed viscoelastic effects on a subset . Assuming that the well-known geometric control condition holds and supposing that the relaxation function is bounded by a function that decays exponentially to zero, we show that the solutions of the corresponding partial viscoelastic model decay exponentially to zero. We give a new geometric proof extending the prior results in the literature from the Euclidean setting to compact Riemannian manifolds (with or without boundary).

**[BAR-LE-RAU]**Claude Bardos, Gilles Lebeau, and Jeffrey Rauch,*Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary*, SIAM J. Control Optim.**30**(1992), no. 5, 1024–1065. MR**1178650**, 10.1137/0330055**[BEL]**Mourad Bellassoued,*Decay of solutions of the elastic wave equation with a localized dissipation*, Ann. Fac. Sci. Toulouse Math. (6)**12**(2003), no. 3, 267–301 (English, with English and French summaries). MR**2030088****[CA-OQ]**Marcelo Moreira Cavalcanti and Higidio Portillo Oquendo,*Frictional versus viscoelastic damping in a semilinear wave equation*, SIAM J. Control Optim.**42**(2003), no. 4, 1310–1324 (electronic). MR**2044797**, 10.1137/S0363012902408010**[CA-DO-FU-SO]**M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka, and J. A. Soriano,*Uniform stabilization of the wave equation on compact surfaces and locally distributed damping*, Methods Appl. Anal.**15**(2008), no. 4, 405–425. MR**2550070**, 10.4310/MAA.2008.v15.n4.a1**[CA-DO-FU-SO-1]**M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka, and J. A. Soriano,*Asymptotic stability of the wave equation on compact surfaces and locally distributed damping—a sharp result*, Trans. Amer. Math. Soc.**361**(2009), no. 9, 4561–4580. MR**2506419**, 10.1090/S0002-9947-09-04763-1**[CA-DO-FU-SO-2]**M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka, and J. A. Soriano,*Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result*, Arch. Ration. Mech. Anal.**197**(2010), no. 3, 925–964. MR**2679361**, 10.1007/s00205-009-0284-z**[CHR]**Hans Christianson,*Semiclassical non-concentration near hyperbolic orbits*, J. Funct. Anal.**246**(2007), no. 2, 145–195. MR**2321040**, 10.1016/j.jfa.2006.09.012**[DA]**C. M. Dafermos,*Asymptotic behavior of solutions of evolution equations*, Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., 1977) Publ. Math. Res. Center Univ. Wisconsin, vol. 40, Academic Press, New York-London, 1978, pp. 103–123. MR**513814****[DA-LA-TO]**Moez Daoulatli, Irena Lasiecka, and Daniel Toundykov,*Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions*, Discrete Contin. Dyn. Syst. Ser. S**2**(2009), no. 1, 67–94. MR**2481581**, 10.3934/dcdss.2009.2.67**[DEH-LE-ZUA]**Belhassen Dehman, Gilles Lebeau, and Enrique Zuazua,*Stabilization and control for the subcritical semilinear wave equation*, Ann. Sci. École Norm. Sup. (4)**36**(2003), no. 4, 525–551 (English, with English and French summaries). MR**2013925**, 10.1016/S0012-9593(03)00021-1**[HI]**Michael Hitrik,*Expansions and eigenfrequencies for damped wave equations*, Journées “Équations aux Dérivées Partielles” (Plestin-les-Grèves, 2001) Univ. Nantes, Nantes, 2001, pp. Exp. No. VI, 10. MR**1843407****[GE]**Patrick Gérard,*Microlocal defect measures*, Comm. Partial Differential Equations**16**(1991), no. 11, 1761–1794. MR**1135919**, 10.1080/03605309108820822**[GES-MES]**Aissa Guesmia and Salim A. Messaoudi,*A general decay result for a viscoelastic equation in the presence of past and finite history memories*, Nonlinear Anal. Real World Appl.**13**(2012), no. 1, 476–485. MR**2846857**, 10.1016/j.nonrwa.2011.08.004**[LE]**G. Lebeau,*Équation des ondes amorties*, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73–109 (French, with English and French summaries). MR**1385677****[MAR]**Patrick Martinez,*A new method to obtain decay rate estimates for dissipative systems with localized damping*, Rev. Mat. Complut.**12**(1999), no. 1, 251–283. MR**1698906**, 10.5209/rev_REMA.1999.v12.n1.17227**[MI]**Luc Miller,*Escape function conditions for the observation, control, and stabilization of the wave equation*, SIAM J. Control Optim.**41**(2002), no. 5, 1554–1566 (electronic). MR**1971962**, 10.1137/S036301290139107X**[RI-SA]**Jaime E. Muñoz Rivera and Alfonso Peres Salvatierra,*Asymptotic behaviour of the energy in partially viscoelastic materials*, Quart. Appl. Math.**59**(2001), no. 3, 557–578. MR**1848535****[NA]**Mitsuhiro Nakao,*Decay and global existence for nonlinear wave equations with localized dissipations in general exterior domains*, New trends in the theory of hyperbolic equations, Oper. Theory Adv. Appl., vol. 159, Birkhäuser, Basel, 2005, pp. 213–299. MR**2175918**, 10.1007/3-7643-7386-5_3**[NA1]**Jeong Ja Bae and Mitsuhiro Nakao,*Energy decay for the wave equation with boundary and localized dissipations in exterior domains*, Math. Nachr.**278**(2005), no. 7-8, 771–783. MR**2141956**, 10.1002/mana.200310271**[RAU-TAY]**Jeffrey Rauch and Michael Taylor,*Decay of solutions to nondissipative hyperbolic systems on compact manifolds*, Comm. Pure Appl. Math.**28**(1975), no. 4, 501–523. MR**0397184****[QIN]**Tiehu Qin,*Asymptotic behavior of a class of abstract semilinear integrodifferential equations and applications*, J. Math. Anal. Appl.**233**(1999), no. 1, 130–147. MR**1684377**, 10.1006/jmaa.1999.6271**[TOUN]**Daniel Toundykov,*Optimal decay rates for solutions of a nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponent source terms under mixed boundary conditions*, Nonlinear Anal.**67**(2007), no. 2, 512–544. MR**2317185**, 10.1016/j.na.2006.06.007**[TRI-YAO]**Roberto Triggiani and P. F. Yao,*Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot*, Appl. Math. Optim.**46**(2002), no. 2-3, 331–375. Special issue dedicated to the memory of Jacques-Louis Lions. MR**1944764**, 10.1007/s00245-002-0751-5**[ZUA]**Enrike Zuazua,*Exponential decay for the semilinear wave equation with locally distributed damping*, Comm. Partial Differential Equations**15**(1990), no. 2, 205–235. MR**1032629**, 10.1080/03605309908820684

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
35L05,
34Dxx,
35A27

Retrieve articles in all journals with MSC (2010): 35L05, 34Dxx, 35A27

Additional Information

**Marcelo M. Cavalcanti**

Affiliation:
Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil

Email:
mmcavalcanti@uem.br

**Valéria N. Domingos Cavalcanti**

Affiliation:
Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil

Email:
vndcavalcanti@uem.br

**Flávio A. F. Nascimento**

Affiliation:
Department of Mathematics, State University of Ceará-FAFIDAM, 62930-000, Limoeiro do Norte, CE, Brazil

Email:
flavio.falcao@uece.br

DOI:
https://doi.org/10.1090/S0002-9939-2013-11869-1

Keywords:
Wave equation,
compact Riemannian manifold,
viscoelastic distributed damping

Received by editor(s):
November 28, 2011

Published electronically:
May 29, 2013

Additional Notes:
Research of the first author was partially supported by the CNPq Grant 300631/2003-0

Research of the second author was partially supported by the CNPq Grant 304895/2003-2

The third author, a doctorate student at the State University of Maringá, was partially supported by a grant of CNPq, Brazil

Communicated by:
James E. Colliander

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.