Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Heisenberg uniqueness pairs in the plane. Three parallel lines


Author: Daniel Blasi Babot
Journal: Proc. Amer. Math. Soc. 141 (2013), 3899-3904
MSC (2010): Primary 42B10; Secondary 31B35, 81Q05
DOI: https://doi.org/10.1090/S0002-9939-2013-11678-3
Published electronically: July 18, 2013
MathSciNet review: 3091778
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Heisenberg uniqueness pair is a pair $ (\Gamma ,\Lambda ),$ where $ \Gamma $ is a curve in the plane and $ \Lambda $ is a set in the plane, with the following property: any bounded Borel measure $ \mu $ in the plane supported on $ \Gamma ,$ which is absolutely continuous with respect to arc length and whose Fourier transform $ \widehat {\mu }$ vanishes on $ \Lambda ,$ must automatically be the zero measure. We characterize the Heisenberg uniqueness pairs for $ \Gamma $ as being three parallel lines $ \Gamma =\mathbb{R}\times \{\alpha ,\beta ,\gamma \}$ with $ \alpha <\beta <\gamma ,$ $ (\gamma -\alpha )/(\beta -\alpha )\in \mathbb{N}.$


References [Enhancements On Off] (What's this?)

  • 1. M. Benedicks, On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), no. 1, 180-183. MR 780328 (86f:43006)
  • 2. W. Heisenberg, Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Physik 43 (1927), 172-198.
  • 3. V. Havin; B. Jöricke, The uncertainty principle in harmonic analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 28. Springer-Verlag, Berlin, 1994. MR 1303780 (96c:42001)
  • 4. H. Hedenmalm; A. Montes-Rodríguez, Heisenberg uniqueness pairs and the Klein-Gordon equation, Ann. of Math. (2) 173 (2011), no. 3, 1507-1527. MR 2800719
  • 5. J.P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin-New York (1970). MR 0275043 (43:801)
  • 6. J.P. Kahane; Y. Katznelson, Sur les ensembles de divergence des séries trigonométriques, Studia Math. 26 (1966), 305-306. MR 0199633 (33:7776)
  • 7. N. Lev, Uniqueness theorems for Fourier transforms, Bull. Sci. Math. 135 (2011), no. 2, 134-140. MR 2773393
  • 8. P. Sjölin, Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin, Bull. Sci. Math. 135 (2011), no. 2, 125-133. MR 2773392 (2012c:42026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B10, 31B35, 81Q05

Retrieve articles in all journals with MSC (2010): 42B10, 31B35, 81Q05


Additional Information

Daniel Blasi Babot
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalunya, Spain
Email: dblasi@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2013-11678-3
Keywords: Heisenberg uniqueness pairs, uncertainty principle
Received by editor(s): March 29, 2011
Received by editor(s) in revised form: October 29, 2011, and January 23, 2012
Published electronically: July 18, 2013
Additional Notes: The author was partially supported by the Göran Gustaffson Foundation, grant No. 2009SGR00420, and the DGICYT grant MTM2008-00145
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society