Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Banach-Saks properties of Musielak-Orlicz and Nakano sequence spaces


Authors: Anna Kamińska and Han Ju Lee
Journal: Proc. Amer. Math. Soc. 142 (2014), 547-558
MSC (2010): Primary 46B03, 46B25, 46B45
DOI: https://doi.org/10.1090/S0002-9939-2013-11842-3
Published electronically: October 24, 2013
MathSciNet review: 3133996
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper Banach-Saks properties of Musielak-Orlicz sequence space $ \ell _\Phi $ are studied. It is shown that $ \ell _\Phi $ has the weak Banach-Saks property if and only if it is separable. Moreover it is proved that in $ \ell _\Phi $ both Banach-Saks type $ p$-properties, $ (BS_p)$ and $ (S_p)$, are equivalent and that the Schur property and $ (BS_\infty )$ also coincide in these spaces. As applications, we give characterizations of the weak Banach-Saks property and the $ (BS_p)$ property in the Nakano sequence space $ \ell ^{(p_n)}$ and weighted Orlicz sequence space $ \ell ^\phi (w)$, in terms of the sequence $ (p_n)$, and the Orlicz function $ \phi $ and the weight sequence $ w$, respectively.


References [Enhancements On Off] (What's this?)

  • [1] S. V. Astashkin and F. A. Sukochev, Banach-Saks property in Marcinkiewicz spaces, J. Math. Anal. Appl. 336 (2007), no. 2, 1231-1258. MR 2353012 (2008m:46022), https://doi.org/10.1016/j.jmaa.2007.03.040
  • [2] Spiros A. Argyros, Gilles Godefroy, and Haskell P. Rosenthal, Descriptive set theory and Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1007-1069. MR 1999190 (2004g:46002), https://doi.org/10.1016/S1874-5849(03)80030-X
  • [3] Pilar Cembranos, The hereditary Dunford-Pettis property on $ C(K,E)$, Illinois J. Math. 31 (1987), no. 3, 365-373. MR 892175 (88g:46028)
  • [4] Yunan Cui and Henryk Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), no. 1-2, 179-187. MR 1702144 (2000g:46024)
  • [5] P. G. Dodds, E. M. Semenov, and F. A. Sukochev, The Banach-Saks property in rearrangement invariant spaces, Studia Math. 162 (2004), no. 3, 263-294. MR 2047655 (2004m:46006), https://doi.org/10.4064/sm162-3-6
  • [6] Fernanda Fuentes and Francisco L. Hernández, On weighted Orlicz sequence spaces and their subspaces, Rocky Mountain J. Math. 18 (1988), no. 3, 585-599. MR 972651 (89k:46010), https://doi.org/10.1216/RMJ-1988-18-3-585
  • [7] I. Halperin and H. Nakano, Generalized $ l^p$ spaces and the Schur property, J. Math. Soc. Japan 5 (1953), 50-58. MR 0058125 (15,326a)
  • [8] W. B. Johnson, On quotients of $ L_{p}$ which are quotients of $ l_{p}$, Compositio Math. 34 (1977), no. 1, 69-89. MR 0454595 (56 #12844)
  • [9] Anna Kamińska, On comparison of Orlicz spaces and Orlicz classes, Funct. Approx. Comment. Math. 11 (1981), 113-125. MR 692720 (84m:46032)
  • [10] Eleni Katirtzoglou, Type and cotype of Musielak-Orlicz sequence spaces, J. Math. Anal. Appl. 226 (1998), no. 2, 431-455. MR 1650205 (99h:46029), https://doi.org/10.1006/jmaa.1998.6089
  • [11] A. Kamińska, L. Maligranda, and L. E. Persson, Indices and regularizations of measurable functions, Function spaces (Poznań, 1998) Lecture Notes in Pure and Appl. Math., vol. 213, Dekker, New York, 2000, pp. 231-246. MR 1772128 (2001i:46041)
  • [12] Anna Kamińska and Mieczysław Mastyło, The Dunford-Pettis property for symmetric spaces, Canad. J. Math. 52 (2000), no. 4, 789-803. MR 1767402 (2001g:46062), https://doi.org/10.4153/CJM-2000-033-9
  • [13] A. Kamińska and M. Mastyło, The Schur and (weak) Dunford-Pettis properties in Banach lattices, J. Aust. Math. Soc. 73 (2002), no. 2, 251-278. MR 1926073 (2003e:46027)
  • [14] Helmut Knaust, Orlicz sequence spaces of Banach-Saks type, Arch. Math. (Basel) 59 (1992), no. 6, 562-565. MR 1189874 (93i:46039), https://doi.org/10.1007/BF01194848
  • [15] Helmut Knaust and Edward Odell, Weakly null sequences with upper $ l_p$-estimates, Functional analysis (Austin, TX, 1987/1989) Lecture Notes in Math., vol. 1470, Springer, Berlin, 1991, pp. 85-107. MR 1126741 (93g:46009), https://doi.org/10.1007/BFb0090216
  • [16] W. Matuszewska and W. Orlicz, On certain properties of $ \varphi $-functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 439-443 (English, with Russian summary). MR 0126158 (23 #A3454)
  • [17] Pei-Kee Lin, Köthe-Bochner function spaces, Birkhäuser Boston Inc., Boston, MA, 2004. MR 2018062 (2005k:46084)
  • [18] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I: Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92, Springer-Verlag, Berlin, 1977. MR 0500056 (58 #17766)
  • [19] Hidegorô Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512. MR 0047929 (13,954g)
  • [20] Vicente Peirats and César Ruiz, On $ l^p$-copies in Musielak-Orlicz sequence spaces, Arch. Math. (Basel) 58 (1992), no. 2, 164-173. MR 1143166 (92i:46009), https://doi.org/10.1007/BF01191882
  • [21] S. A. Rakov, The Banach-Saks property for a Banach space, Mat. Zametki 26 (1979), no. 6, 823-834, 972 (Russian). MR 567220 (81i:46018)
  • [22] S. A. Rakov, The Banach-Saks exponent of some Banach spaces of sequences, Mat. Zametki 32 (1982), no. 5, 613-625, 747 (Russian). MR 684604 (84c:46018)
  • [23] E. M. Semënov and F. A. Sukochev, The Banach-Saks index, Mat. Sb. 195 (2004), no. 2, 117-140 (Russian, with Russian summary); English transl., Sb. Math. 195 (2004), no. 1-2, 263-285. MR 2068953 (2005d:46063), https://doi.org/10.1070/SM2004v195n02ABEH000802
  • [24] F. A. Sukochev and D. Zanin, Khinchin inequality and Banach-Saks type properties in rearrangement-invariant spaces, Studia Math. 191 (2009), no. 2, 101-122. MR 2472192 (2009j:46072), https://doi.org/10.4064/sm191-2-1
  • [25] Joseph Y. T. Woo, On modular sequence spaces, Studia Math. 48 (1973), 271-289. MR 0358289 (50 #10755)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B03, 46B25, 46B45

Retrieve articles in all journals with MSC (2010): 46B03, 46B25, 46B45


Additional Information

Anna Kamińska
Affiliation: Department of Mathematics, University of Memphis, Memphis, Tennessee 38152
Email: kaminska@memphis.edu

Han Ju Lee
Affiliation: Department of Mathematics Education, Dongguk University - Seoul, 100-715 Seoul, Republic of Korea
Email: hanjulee@dongguk.edu

DOI: https://doi.org/10.1090/S0002-9939-2013-11842-3
Keywords: Banach-Saks properties, Schur property, Musielak-Orlicz space, Nakano space, variable exponent space, weighted Orlicz space
Received by editor(s): November 14, 2011
Received by editor(s) in revised form: March 19, 2012
Published electronically: October 24, 2013
Additional Notes: The second author is the corresponding author. He was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (20121A1A1006869)
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society