Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

A class of nonlinear delay evolution equations with nonlocal initial conditions


Authors: Monica-Dana Burlică and Daniela Roşu
Journal: Proc. Amer. Math. Soc. 142 (2014), 2445-2458
MSC (2010): Primary 34K05, 34K13, 34K20, 34K30, 35K55, 35K65, 47H05
DOI: https://doi.org/10.1090/S0002-9939-2014-11969-1
Published electronically: March 28, 2014
MathSciNet review: 3195766
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish a sufficient condition for the existence, uniqueness and global uniform asymptotic stability of a $ C^0$-solution for the nonlinear delay differential evolution equation

$\displaystyle \left \{\begin {array}{ll}\displaystyle u'(t)\in Au(t)+f(t,u_t),&... ...hbb{R}_+, \\ [1mm] u(t)=g(u)(t),&\quad t\in [\,-\tau ,0\,], \end{array}\right .$    

where $ \tau >0$, $ X$ is a real Banach space, $ A$ is the infinitesimal generator of a nonlinear semigroup of contractions, $ f:\mathbb{R}_+\times C([\,-\tau ,0\,];\overline {D(A)})\to X$ is continuous and $ g:C_b([\,-\tau ,+\infty );\overline {D(A)})\to C([\,-\tau ,0\,];\overline {D(A)})$ is nonexpansive.

References [Enhancements On Off] (What's this?)

  • [1] S. Aizicovici, N. H. Pavel, and I. I. Vrabie, Anti-periodic solutions to strongly nonlinear evolution equations in Hilbert spaces, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 44 (1998), no. 2, 227-234 (2000). Dedicated to Professor C. Corduneanu on the occasion of his 70th birthday. MR 1783202 (2001f:34118)
  • [2] Viorel Barbu, Nonlinear differential equations of monotone types in Banach spaces, Springer Monographs in Mathematics, Springer, New York, 2010. MR 2582280 (2011d:34001)
  • [3] Haïm Brézis and Walter A. Strauss, Semi-linear second-order elliptic equations in $ L^{1}$ , J. Math. Soc. Japan 25 (1973), 565-590. MR 0336050 (49 #826)
  • [4] Ludwik Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), no. 2, 494-505. MR 1137634 (92m:35005), https://doi.org/10.1016/0022-247X(91)90164-U
  • [5] Radu Caşcaval and Ioan I. Vrabie, Existence of periodic solutions for a class of nonlinear evolution equations, Rev. Mat. Univ. Complut. Madrid 7 (1994), no. 2, 325-338. MR 1297518 (95i:34113)
  • [6] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298. MR 0287357 (44 #4563)
  • [7] Keng Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl. 179 (1993), no. 2, 630-637. MR 1249842 (95a:35076), https://doi.org/10.1006/jmaa.1993.1373
  • [8] Jesús García-Falset and Simeon Reich, Integral solutions to a class of nonlocal evolution equations, Commun. Contemp. Math. 12 (2010), no. 6, 1031-1054. MR 2748284 (2012b:34163), https://doi.org/10.1142/S021919971000410X
  • [9] Jack Hale, Theory of functional differential equations, 2nd ed., Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York, 1977. MR 0508721 (58 #22904)
  • [10] Hernán R. Henríquez and Carlos Lizama, Periodic solutions of abstract functional differential equations with infinite delay, Nonlinear Anal. 75 (2012), no. 4, 2016-2023. MR 2870895 (2012m:34128), https://doi.org/10.1016/j.na.2011.10.002
  • [11] Norimichi Hirano, Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc. 120 (1994), no. 1, 185-192. MR 1174494 (94b:34087), https://doi.org/10.2307/2160185
  • [12] Yongxiang Li, Existence and asymptotic stability of periodic solution for evolution equations with delays, J. Funct. Anal. 261 (2011), no. 5, 1309-1324. MR 2807101 (2012d:34177), https://doi.org/10.1016/j.jfa.2011.05.001
  • [13] M. McKibben, Discovering Evolution Equations with Applications. Vol. I. Deterministic Models, Appl. Math. Nonlinear Sci. Ser., Chapman & Hall/CRC, 2011.
  • [14] Angela Paicu, Periodic solutions for a class of nonlinear evolution equations in Banach spaces, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 55 (2009), no. 1, 107-118. MR 2510715 (2010e:35169)
  • [15] Angela Paicu and Ioan I. Vrabie, A class of nonlinear evolution equations subjected to nonlocal initial conditions, Nonlinear Anal. 72 (2010), no. 11, 4091-4100. MR 2606769 (2011b:34171), https://doi.org/10.1016/j.na.2010.01.041
  • [16] Ioan I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (1990), no. 3, 653-661. MR 1015686 (90k:34080), https://doi.org/10.2307/2048204
  • [17] I. I. Vrabie, Compactness methods for nonlinear evolutions, 2nd ed., with a foreword by A. Pazy, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, Longman Scientific & Technical, Harlow, 1995. MR 1375237 (96k:47116)
  • [18] Ioan I. Vrabie, Differential equations. An introduction to basic concepts, results and applications, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. MR 2839525 (2012e:34001)
  • [19] Ioan I. Vrabie, Existence for nonlinear evolution inclusions with nonlocal retarded initial conditions, Nonlinear Anal. 74 (2011), no. 18, 7047-7060. MR 2833693 (2012g:34147), https://doi.org/10.1016/j.na.2011.07.025
  • [20] Ioan I. Vrabie, Existence in the large for nonlinear delay evolution inclusions with nonlocal initial conditions, J. Funct. Anal. 262 (2012), no. 4, 1363-1391. MR 2873844, https://doi.org/10.1016/j.jfa.2011.11.006
  • [21] Ioan I. Vrabie, Nonlinear retarded evolution equations with nonlocal initial conditions, Dynam. Systems Appl. 21 (2012), no. 2-3, 417-439. MR 2918389
  • [22] Ioan I. Vrabie, Global solutions for nonlinear delay evolution inclusions with nonlocal initial conditions, Set-Valued Var. Anal. 20 (2012), no. 3, 477-497. MR 2949638, https://doi.org/10.1007/s11228-012-0203-6

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34K05, 34K13, 34K20, 34K30, 35K55, 35K65, 47H05

Retrieve articles in all journals with MSC (2010): 34K05, 34K13, 34K20, 34K30, 35K55, 35K65, 47H05


Additional Information

Monica-Dana Burlică
Affiliation: Department of Mathematics and Informatics, “G. Asachi” Technical University, Bvd. Carol I, no. 11 A, Iaşi, 700506, Romania
Email: monicaburlica@yahoo.com

Daniela Roşu
Affiliation: Department of Mathematics and Informatics, “G. Asachi” Technical University, Bvd. Carol I, no. 11 A, Iaşi, 700506, Romania
Email: rosudaniela100@yahoo.com

DOI: https://doi.org/10.1090/S0002-9939-2014-11969-1
Keywords: Differential delay evolution equation, nonlocal delay initial condition, periodic solutions, metric fixed point arguments, nonresonance condition, nonlinear parabolic equations.
Received by editor(s): June 14, 2012
Received by editor(s) in revised form: July 30, 2012
Published electronically: March 28, 2014
Additional Notes: This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS–UEFISCDI, project number PN-II-ID-PCE-2011-3-0052.
Communicated by: Yingfei Yi
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society