Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

General $ \Omega$-theorems for coefficients of $ L$-functions


Authors: Jerzy Kaczorowski and Alberto Perelli
Journal: Proc. Amer. Math. Soc. 143 (2015), 5139-5145
MSC (2010): Primary 11N37, 11M41
DOI: https://doi.org/10.1090/proc/12652
Published electronically: June 5, 2015
MathSciNet review: 3411132
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a general $ \Omega $-theorem for the coefficients of polynomial combinations of $ L$-functions from the Selberg class. As a consequence, we show that the real and imaginary parts of any linear combination of coefficients of such $ L$-functions have infinitely many sign changes, provided some simple necessary conditions are satisfied.


References [Enhancements On Off] (What's this?)

  • [1] R. Balasubramanian and M. Ram Murty, An $ \Omega $-theorem for Ramanujan's $ \tau $-function, Invent. Math. 68 (1982), no. 2, 241-252. MR 666161 (84a:10023a), https://doi.org/10.1007/BF01394057
  • [2] H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214 (2005h:11005)
  • [3] J. Kaczorowski, Axiomatic theory of $ L$-functions: the Selberg class, Analytic number theory, Lecture Notes in Math., vol. 1891, Springer, Berlin, 2006, pp. 133-209. MR 2277660 (2008a:11103), https://doi.org/10.1007/978-3-540-36364-4_4
  • [4] J. Kaczorowski, G. Molteni, and A. Perelli, Linear independence in the Selberg class, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 1, 28-32 (English, with English and French summaries). MR 1669479 (2000h:11094)
  • [5] J. Kaczorowski, G. Molteni, and A. Perelli, Linear independence of $ L$-functions, Forum Math. 18 (2006), no. 1, 1-7. MR 2206240 (2006k:11176), https://doi.org/10.1515/FORUM.2006.001
  • [6] J. Kaczorowski and A. Perelli, On the structure of the Selberg class. I. $ 0\leq d\leq 1$, Acta Math. 182 (1999), no. 2, 207-241. MR 1710182 (2000h:11097), https://doi.org/10.1007/BF02392574
  • [7] J. Kaczorowski and A. Perelli, The Selberg class: a survey, Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997) de Gruyter, Berlin, 1999, pp. 953-992. MR 1689554 (2001g:11141)
  • [8] J. Kaczorowski and A. Perelli, On the structure of the Selberg class. VI. Non-linear twists, Acta Arith. 116 (2005), no. 4, 315-341. MR 2110507 (2005i:11128), https://doi.org/10.4064/aa116-4-2
  • [9] J. Kaczorowski and A. Perelli, An $ \Omega $-result for the difference of the coefficients of two $ L$-functions, Comment. Math. Univ. St. Pauli 60 (2011), no. 1-2, 77-82. MR 2951924
  • [10] J. Kaczorowski and A. Perelli, Twists and resonance of $ L$-functions, I. See arXiv:1304.4734.
  • [11] W. Kohnen and W. Pribitkin, On an oscillatory result for the coefficients of general Dirichlet series, From Fourier analysis and number theory to radon transforms and geometry, Dev. Math., vol. 28, Springer, New York, 2013, pp. 371-374. MR 2986967, https://doi.org/10.1007/978-1-4614-4075-8_18
  • [12] W. Kohnen and J. Sengupta, On the first sign change of Hecke eigenvalues of newforms, Math. Z. 254 (2006), no. 1, 173-184. MR 2232011 (2007f:11044), https://doi.org/10.1007/s00209-006-0940-z
  • [13] M. Ram Murty, Oscillations of Fourier coefficients of modular forms, Math. Ann. 262 (1983), no. 4, 431-446. MR 696516 (84g:10053), https://doi.org/10.1007/BF01456059
  • [14] A. Perelli, A survey of the Selberg class of $ L$-functions. I, Milan J. Math. 73 (2005), 19-52. MR 2175035 (2006g:11181), https://doi.org/10.1007/s00032-005-0037-x
  • [15] A. Perelli, A survey of the Selberg class of $ L$-functions. II, Riv. Mat. Univ. Parma (7) 3* (2004), 83-118. MR 2128842 (2006g:11189)
  • [16] A. Perelli, Non-linear twists of $ L$-functions: a survey, Milan J. Math. 78 (2010), no. 1, 117-134. MR 2684775 (2011h:11098), https://doi.org/10.1007/s00032-010-0119-2
  • [17] W. Pribitkin, On the sign changes of coefficients of general Dirichlet series, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3089-3094. MR 2407071 (2009d:11128), https://doi.org/10.1090/S0002-9939-08-09296-4
  • [18] W. Pribitkin, On the oscillatory behavior of certain arithmetic functions associated with automorphic forms, J. Number Theory 131 (2011), no. 11, 2047-2060. MR 2825111 (2012h:11069), https://doi.org/10.1016/j.jnt.2011.04.014

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11N37, 11M41

Retrieve articles in all journals with MSC (2010): 11N37, 11M41


Additional Information

Jerzy Kaczorowski
Affiliation: Faculty of Mathematics and Computer Science, A.Mickiewicz University, 61-614 Poznań, Poland — and — Institute of Mathematics of the Polish Academy of Sciences, 00-956 Warsaw, Poland
Email: kjerzy@amu.edu.pl

Alberto Perelli
Affiliation: Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italy
Email: perelli@dima.unige.it

DOI: https://doi.org/10.1090/proc/12652
Keywords: Sign changes of coefficients, $L$-functions, Selberg class
Received by editor(s): September 4, 2013
Received by editor(s) in revised form: October 11, 2014
Published electronically: June 5, 2015
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society