Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Improved Cauchy radius for scalar and matrix polynomials


Author: A. Melman
Journal: Proc. Amer. Math. Soc. 146 (2018), 613-624
MSC (2010): Primary 30C15, 47A56, 65F15
DOI: https://doi.org/10.1090/proc/13826
Published electronically: October 18, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We improve the Cauchy radius of both scalar and matrix polynomials, which is an upper bound on the moduli of the zeros and eigenvalues, respectively, by using appropriate polynomial multipliers.


References [Enhancements On Off] (What's this?)

  • [1] Dario A. Bini, Vanni Noferini, and Meisam Sharify, Locating the eigenvalues of matrix polynomials, SIAM J. Matrix Anal. Appl. 34 (2013), no. 4, 1708-1727. MR 3144796, https://doi.org/10.1137/120886741
  • [2] A. L. Cauchy, Sur la résolution des équations numériques et sur la théorie de l'élimination, Exercices de Mathématiques, Quatrième Année, 65-128. de Bure frères, Paris, 1829. Also in: Oeuvres Complètes, Série 2, Tome 9, 86-161. Gauthiers-Villars et fils, Paris, 1891.
  • [3] A. Feriani, F. Perotti, and V. Simoncini, Iterative system solvers for the frequency analysis of linear mechanical systems, Comput. Methods Appl. Mech, Eng., 19 (2000), 1719-1739.
  • [4] Nicholas J. Higham and Françoise Tisseur, Bounds for eigenvalues of matrix polynomials, Linear Algebra Appl. 358 (2003), 5-22. Special issue on accurate solution of eigenvalue problems (Hagen, 2000). MR 1942721, https://doi.org/10.1016/S0024-3795(01)00316-0
  • [5] Morris Marden, Geometry of polynomials, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR 0225972
  • [6] A. Melman, Generalization and variations of Pellet's theorem for matrix polynomials, Linear Algebra Appl. 439 (2013), no. 5, 1550-1567. MR 3067822, https://doi.org/10.1016/j.laa.2013.05.003
  • [7] A. Melman, Bounds for eigenvalues of matrix polynomials with applications to scalar polynomials, Linear Algebra Appl. 504 (2016), 190-203. MR 3502534, https://doi.org/10.1016/j.laa.2016.04.005
  • [8] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30C15, 47A56, 65F15

Retrieve articles in all journals with MSC (2010): 30C15, 47A56, 65F15


Additional Information

A. Melman
Affiliation: Department of Applied Mathematics, School of Engineering, Santa Clara University, Santa Clara, California 95053
Email: amelman@scu.edu

DOI: https://doi.org/10.1090/proc/13826
Keywords: Bound, zero, root, polynomial, eigenvalue, multiplier, matrix polynomial, Cauchy radius.
Received by editor(s): November 17, 2016
Received by editor(s) in revised form: March 15, 2017
Published electronically: October 18, 2017
Communicated by: Walter Van Assche
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society