Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Counting problems for geodesics on arithmetic hyperbolic surfaces


Author: Benjamin Linowitz
Journal: Proc. Amer. Math. Soc. 146 (2018), 1347-1361
MSC (2010): Primary 57M50
DOI: https://doi.org/10.1090/proc/13782
Published electronically: September 14, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is a longstanding problem to determine the precise relationship between the geodesic length spectrum of a hyperbolic manifold and its commensurability class. A well-known result of Reid, for instance, shows that the geodesic length spectrum of an arithmetic hyperbolic surface determines the surface's commensurability class. It is known, however, that non-commensurable arithmetic hyperbolic surfaces may share arbitrarily large portions of their length spectra. In this paper we investigate this phenomenon and prove a number of quantitative results about the maximum cardinality of a family of pairwise non-commensurable arithmetic hyperbolic surfaces whose length spectra all contain a fixed (finite) set of non-negative real numbers.


References [Enhancements On Off] (What's this?)

  • [1] Antal Balog and Ken Ono, The Chebotarev density theorem in short intervals and some questions of Serre, J. Number Theory 91 (2001), no. 2, 356-371. MR 1876282, https://doi.org/10.1006/jnth.2001.2694
  • [2] A. Borel, Commensurability classes and volumes of hyperbolic $ 3$-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1-33. MR 616899
  • [3] Ted Chinburg and Eduardo Friedman, An embedding theorem for quaternion algebras, J. London Math. Soc. (2) 60 (1999), no. 1, 33-44. MR 1721813, https://doi.org/10.1112/S0024610799007607
  • [4] T. Chinburg, E. Hamilton, D. D. Long, and A. W. Reid, Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds, Duke Math. J. 145 (2008), no. 1, 25-44. MR 2451288, https://doi.org/10.1215/00127094-2008-045
  • [5] D. Futer and C. Millichap,
    Spectrally similar incommensurable 3-manifolds,
    https://arxiv.org/abs/1609.00748.
  • [6] Ruth Kellerhals, Hyperbolic orbifolds of minimal volume, Comput. Methods Funct. Theory 14 (2014), no. 2-3, 465-481. MR 3265373, https://doi.org/10.1007/s40315-014-0074-y
  • [7] Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723
  • [8] Benjamin Linowitz, Selectivity in quaternion algebras, J. Number Theory 132 (2012), no. 7, 1425-1437. MR 2903165, https://doi.org/10.1016/j.jnt.2012.01.012
  • [9] B. Linowitz, D. B. McReynolds, P. Pollack, and L. Thompson, Counting and effective rigidity in algebra and geometry, http://arxiv.org/abs/1407.2294.
  • [10] Alexander Lubotzky, Beth Samuels, and Uzi Vishne, Division algebras and noncommensurable isospectral manifolds, Duke Math. J. 135 (2006), no. 2, 361-379. MR 2267287, https://doi.org/10.1215/S0012-7094-06-13525-1
  • [11] Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957
  • [12] Daniel A. Marcus, Number fields, Springer-Verlag, New York-Heidelberg, 1977. Universitext. MR 0457396
  • [13] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
  • [14] C. Millichap,
    Mutations and short geodesics in hyperbolic 3-manifolds,
    Comm. Anal. Geom. (to appear),
    https://arxiv.org/abs/1406.6033.
  • [15] Gopal Prasad and Andrei S. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 113-184. MR 2511587, https://doi.org/10.1007/s10240-009-0019-6
  • [16] Alan W. Reid, Isospectrality and commensurability of arithmetic hyperbolic $ 2$- and $ 3$-manifolds, Duke Math. J. 65 (1992), no. 2, 215-228. MR 1150584, https://doi.org/10.1215/S0012-7094-92-06508-2
  • [17] I. Reiner, Maximal orders, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1975. London Mathematical Society Monographs, No. 5. MR 0393100
  • [18] Hideo Shimizu, On zeta functions of quaternion algebras, Ann. of Math. (2) 81 (1965), 166-193. MR 0171771, https://doi.org/10.2307/1970389

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M50

Retrieve articles in all journals with MSC (2010): 57M50


Additional Information

Benjamin Linowitz
Affiliation: Department of Mathematics, Oberlin College, Oberlin, Ohio 44074
Email: benjamin.linowitz@oberlin.edu

DOI: https://doi.org/10.1090/proc/13782
Received by editor(s): February 28, 2017
Received by editor(s) in revised form: April 15, 2017
Published electronically: September 14, 2017
Communicated by: David Futer
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society