Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Zeros of some special entire functions


Authors: Árpád Baricz and Sanjeev Singh
Journal: Proc. Amer. Math. Soc. 146 (2018), 2207-2216
MSC (2010): Primary 30D15, 30A08, 33C10, 33C20
DOI: https://doi.org/10.1090/proc/13927
Published electronically: January 12, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The real and complex zeros of some special entire functions such as Wright, hyper-Bessel, and a special case of generalized hypergeometric functions are studied by using some classical results of Laguerre, Obreschkhoff, Pólya, and Runckel. The obtained results extend the known theorem of Hurwitz on the exact number of nonreal zeros of Bessel functions of the first kind. Moreover, results on zeros of derivatives of Bessel functions and the cross-product of Bessel functions are also given, which are related to some recent open problems.


References [Enhancements On Off] (What's this?)

  • [ABP16] Huda A. Al-Kharsani, Árpád Baricz, and Tibor K. Pogány, Starlikeness of a cross-product of Bessel functions, J. Math. Inequal. 10 (2016), no. 3, 819-827. MR 3565155, https://doi.org/10.7153/jmi-10-66
  • [BKP16] Árpád Baricz, Chrysi G. Kokologiannaki, and Tibor K. Pogány, Zeros of Bessel function derivatives, Proc. Amer. Math. Soc. 146 (2018), no. 1, 209-222. MR 3723134
  • [BSY16] Á. Baricz, R. Szász, N. Yağmur, Products of Bessel and modified Bessel functions, arXiv:1601.01998.
  • [CR15] H. Chaggara and N. Ben Romdhane, On the zeros of the hyper-Bessel function, Integral Transforms Spec. Funct. 26 (2015), no. 2, 96-101. MR 3275453, https://doi.org/10.1080/10652469.2014.973191
  • [CC06] Thomas Craven and George Csordas, The Fox-Wright functions and Laguerre multiplier sequences, J. Math. Anal. Appl. 314 (2006), no. 1, 109-125. MR 2183541, https://doi.org/10.1016/j.jmaa.2005.03.058
  • [CF16] George Csordas and Tamás Forgács, Multiplier sequences, classes of generalized Bessel functions and open problems, J. Math. Anal. Appl. 433 (2016), no. 2, 1369-1389. MR 3398769, https://doi.org/10.1016/j.jmaa.2015.08.047
  • [DC09] Dimitar K. Dimitrov and Youssèf Ben Cheikh, Laguerre polynomials as Jensen polynomials of Laguerre-Pólya entire functions, J. Comput. Appl. Math. 233 (2009), no. 3, 703-707. MR 2583006, https://doi.org/10.1016/j.cam.2009.02.039
  • [DR11] Dimitar K. Dimitrov and Peter K. Rusev, Zeros of entire Fourier transforms, East J. Approx. 17 (2011), no. 1, 1-110. MR 2882940
  • [Hi22] Emil Hilb, Die komplexen Nullstellen der Besselschen Funktionen, Math. Z. 15 (1922), no. 1, 274-279 (German). MR 1544573, https://doi.org/10.1007/BF01494399
  • [HS43] E. Hille and G. Szegő, On the complex zeros of the Bessel functions, Bull. Amer. Math. Soc. 49 (1943), 605-610. MR 0008279, https://doi.org/10.1090/S0002-9904-1943-07987-6
  • [Hu89] A. Hurwitz, Ueber die Nullstellen der Bessel'schen Function, Math. Ann. 33 (1888), no. 2, 246-266 (German). MR 1510541, https://doi.org/10.1007/BF01443855
  • [Je13] J. L. W. V. Jensen, Recherches sur la théorie des équations, Acta Math. 36 (1913), no. 1, 181-195 (French). MR 1555086, https://doi.org/10.1007/BF02422380
  • [KK16] S. I. Kalmykov, D. B. Karp, Log-concavity and Turán-type inequalities for the generalized hypergeometric function, Anal. Math. (in press).
  • [KK00] Haseo Ki and Young-One Kim, On the number of nonreal zeros of real entire functions and the Fourier-Pólya conjecture, Duke Math. J. 104 (2000), no. 1, 45-73. MR 1769725, https://doi.org/10.1215/S0012-7094-00-10413-9
  • [Ob29] N. Obreschkoff, Über die Nullstellen der Besselschen Funktionen, Jber. Deutschen Math. Verein 38 (1929) 156-161.
  • [Ob63] N. Obrechkoff, Zeros of Polynomials, Publ. Bulg. Acad. Sci., Sofia, 1963 (in Bulgarian); English translation (by I. Dimovski and P. Rusev) published by The Marin Drinov Acad. Publ. House, Sofia, 2003.
  • [Pe66] Alexander Peyerimhoff, On the zeros of power series, Michigan Math. J. 13 (1966), 193-214. MR 0190304
  • [Po23] G. Pólya, On the zeros of an integral function represented by Fourier's integral, Messenger of Math. 52 (1923) 185-188.
  • [Po29] G. Pólya, Über einen Satz von Laguerre, Jber. Deutschen Math. Verein 38 (1929) 161-168.
  • [Ri90] Donald St. P. Richards, Totally positive kernels, Pólya frequency functions, and generalized hypergeometric series, Linear Algebra Appl. 137/138 (1990), 467-478. MR 1067687, https://doi.org/10.1016/0024-3795(90)90139-4
  • [Ru69] Hans-J. Runckel, Zeros of entire functions, Trans. Amer. Math. Soc. 143 (1969), 343-362. MR 0252641, https://doi.org/10.2307/1995253
  • [Ti39] E. C. Titchmarsh, The theory of functions, Reprint of the second (1939) edition. Oxford University Press, Oxford, 1958. MR 3155290
  • [Wa21] G. N. Watson, The Zeros of Lommel's Polynomials, Proc. London Math. Soc. (2) S2-19 (1921), 266-272. MR 1576596, https://doi.org/10.1112/plms/s2-19.1.266
  • [Wa22] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30D15, 30A08, 33C10, 33C20

Retrieve articles in all journals with MSC (2010): 30D15, 30A08, 33C10, 33C20


Additional Information

Árpád Baricz
Affiliation: Department of Economics, Babeş-Bolyai University, Cluj-Napoca, Romania; Institute of Applied Mathematics, Óbuda University, Budapest, Hungary
Email: bariczocsi@yahoo.com

Sanjeev Singh
Affiliation: Indian Statistical Institute, Chennai Centre, Chennai, India
Address at time of publication: Discipline of Mathematics, Indian Institute of Technology Indore, Indore, India
Email: sanjeevsinghiitm@gmail.com

DOI: https://doi.org/10.1090/proc/13927
Keywords: Entire function, Laguerre--P\'olya class of entire functions, zeros of entire functions, Bessel, Wright, hyper-Bessel functions, reciprocal gamma function, generalized hypergeometric function.
Received by editor(s): February 14, 2017
Received by editor(s) in revised form: July 31, 2017, and August 15, 2017
Published electronically: January 12, 2018
Additional Notes: The research of Á. Baricz was supported by the STAR-UBB Advanced Fellowship-Intern of the Babeş-Bolyai University of Cluj-Napoca.
Communicated by: Yuan Xu
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society