Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Asymptotic solutions of toroidal shell problems


Author: R. A. Clark
Journal: Quart. Appl. Math. 16 (1958), 47-60
DOI: https://doi.org/10.1090/qam/99973
MathSciNet review: QAM99973
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. Beskin, Bending of curved thin tubes, J. Appl. Mechanics, 12, A1-A7 1945)
  • [2] R. A. Clark, On the theory of thin elastic toroidal shells, J. Math, and Phys. 29, 146-178 (1950) MR 0039491
  • [3] R. A. Clark and W. E. Gibson, Asymptotic solution of a non-homogeneous differential equation, in preparation.
  • [4] R. A. Clark and E. Reissner, Bending of curved tubes, Advances Appl. Mech. II, Academic Press, New York, 1951, 93-122 MR 0047495
  • [5] F. B. Hildebrand, On asymptotic integration in shell theory, Proc. Symposia Appl. Math. 3, McGraw-Hill, New York 1950, 53-66 MR 0039490
  • [6] R. E. Langer, On the asymptotic solution of ordinary differential equations, Trans. Am. Math. Soc.(a) 33, 22-64 (1931); (b) 37, 397-416 (1935), (c) 67, 461-490 (1949)
  • [7] P. M. Naghdi, On the deformation of elastic shells of revolution, Quart. Appl. Math. 12, 369-374 (1954) MR 0067693
  • [8] E. Reissner, On bending of curved thin-walled tubes, Proc. Natl. Acad. Sci. U. S. 35, 204-208 (1949) MR 0030438
  • [9] E. Reissner, On the theory of thin elastic shells, Reissner Anniversary Volume, Edwards, Ann Arbor, 1949, 231-247 MR 0030885


Additional Information

DOI: https://doi.org/10.1090/qam/99973
Article copyright: © Copyright 1958 American Mathematical Society

American Mathematical Society