Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Estimating the critical radius for radially symmetric cavitation


Author: C. A. Stuart
Journal: Quart. Appl. Math. 51 (1993), 251-263
MSC: Primary 73G05; Secondary 73C50
DOI: https://doi.org/10.1090/qam/1218367
MathSciNet review: MR1218367
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] C. A. Stuart, Radially symmetric cavitation for hyperelastic materials, Ann. Inst. H. Poincaré 2, 33-66 (1985) MR 781591
  • [2] -, Special problems involving uniqueness and multiplicity in hyperelasticity, Nonlinear Functional Analysis and Its Applications, (S. P. Singh, ed.), Reidel, Dordrecht, 1986 MR 852573
  • [3] F. Meynard, Cavitation radiale d'un milieu hyperélastique isotrope et homogène, thèse No. 89, École Polytechnique Fédérale Lausanne, 1990
  • [4] -, Existence and nonexistence results on the radially symmetric cavitation problem, Quart. J. Appl. Math. 50, 201-226 (1992) MR 1162272
  • [5] J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy Soc. London A306, 557-611 (1982) MR 703623
  • [6] J. Sivaloganathan, A field theory approach to stability of radial equilibria in nonlinear elasticity, Math. Proc. Cambridge Philos. Soc. 99, 586-604 (1986) MR 830370
  • [7] P. Marcellini, The stored-energy for some discontinuous deformations in nonlinear elasticity, Partial Differential Equations and the Calculus of Variation, Vol. II, (F. Colombini et al, eds.), Birkhäuser, Basel, 1989, pp. 767-786 MR 1034028
  • [8] -, Nonconvex integrals of the calculus of variations, Methods of Nonconvex Analysis, (A. Cellina, ed.), Lecture Notes in Math. vol. 1446, Springer-Verlag, 1990, pp. 16-57 MR 1079758
  • [9] J. E. Marsen, and T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliffs, NJ, 1983
  • [10] R. James and S. J. Spector, The formation of filamentary voids in solids, J. Mech. Phys. Solids 39, 783-813 (1991) MR 1120242
  • [11] R. W. Ogden, Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids, Proc. Roy. Soc. London A328, 567-583 (1972)
  • [12] C. O. Horgan, Void nucleation and growth for compressible non-linearly elastic materials: an example, Internat. J. Solids Structures 29, 279-291 (1992) MR 1138336

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73G05, 73C50

Retrieve articles in all journals with MSC: 73G05, 73C50


Additional Information

DOI: https://doi.org/10.1090/qam/1218367
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society