Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Existence and nonexistence of global solutions of the wave equation with a nonlinear boundary condition

Authors: Azmy S. Ackleh and Keng Deng
Journal: Quart. Appl. Math. 59 (2001), 153-158
MSC: Primary 35L05; Secondary 35B40, 35L15, 35L20
DOI: https://doi.org/10.1090/qam/1811100
MathSciNet review: MR1811100
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the initial-boundary value problem

$\displaystyle {u_{tt}} = {u_{xx}}, \qquad 0 < x < \infty , \qquad t > 0,$

$\displaystyle - {u_x}\left( 0, t \right) = h\left( u\left( 0, t \right) \right), \qquad t > 0,$

$\displaystyle u\left( x, 0 \right) = f\left( x \right), \qquad {u_t}\left( x, 0 \right) = g\left( x \right), \qquad 0 < x < \infty .$

We establish criteria for existence and nonexistence of global solutions, and we present the growth rate at blow-up.

References [Enhancements On Off] (What's this?)

  • [1] N. Bleistein and R. A. Handelsman, Asymptotic Expansion of Integrals, Holt, Rinehart and Winston, New York, 1975
  • [2] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, New York, 1991 MR 1109491
  • [3] V. A. Galaktionov and H. A. Levine, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math. 94, 125-146 (1996) MR 1394570
  • [4] R. T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z. 177, 323-340 (1981) MR 618199
  • [5] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math. 32, 501-505 (1980) MR 575735
  • [6] W. E. Olmstead and C. A. Roberts, Explosion in a diffusive strip due to a concentrated nonlinear source, Methods Math. Anal. 1, 434-445 (1994) MR 1317023
  • [7] C. A. Roberts and W. E. Olmstead, Growth rates for blow-up solutions of nonlinear Volterra equations, Quart. Appl. Math. 54, 153-160 (1996) MR 1373844
  • [8] T. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations 52, 378-406 (1984) MR 744303

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35L05, 35B40, 35L15, 35L20

Retrieve articles in all journals with MSC: 35L05, 35B40, 35L15, 35L20

Additional Information

DOI: https://doi.org/10.1090/qam/1811100
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society