Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Global weak solutions to the Euler-Boltzmann equations in radiation hydrodynamics


Authors: Peng Jiang and Dehua Wang
Journal: Quart. Appl. Math. 70 (2012), 25-44
MSC (2000): Primary 41A63, 78A40, 76N15, 76X05, 74G25, 54D30
DOI: https://doi.org/10.1090/S0033-569X-2011-01227-2
Published electronically: August 26, 2011
MathSciNet review: 2920613
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Cauchy problem for the one-dimensional Euler-Boltzmann equations in radiation hydrodynamics is studied. The global weak entropy solutions are constructed using the Godunov finite difference scheme. The global existence of weak entropy solutions in $ L^\infty$ with arbitrarily large initial data is established with the aid of the compensated compactness method.


References [Enhancements On Off] (What's this?)

  • 1. C. Buet, B. Despres, Asymptotic analysis of fluid models for coupling of radiation and hydrodynamics, J. of Quantitative Spectroscopy and Radiative Transfer. 85 (2004), 385-418.
  • 2. G.-Q. Chen, Convergence of Lax-Friedrichs scheme for isentropic gas dynamics. III, Acta Math. Sci. 6 (1986), 75-120. MR 924671 (89f:76007)
  • 3. G.-Q. Chen, T.-H. Li, Global entropy solution in $ L^{\infty}$ to the Euler equations and Euler-Poisson equations for isothermal fluid with spherical symmetry, Methods and Applications of Analysis. Vol. 10, No. 2 (2003), 215-244. MR 2074749 (2005f:35255)
  • 4. G.-Q. Chen, D. Wang, Convergence of shock capturing scheme for the compressible Euler-Poisson equations, Commun. Math. Phys. 179 (1996), 333-364. MR 1400743 (97j:35119)
  • 5. G.-Q. Chen, D. Wang, The Cauchy problem for the Euler equations for compressible ßuids, Handbook of Mathematical Fluid Dynamics, 421-543, Amsterdam: North-Holland, 2002. MR 1942468 (2004e:35182)
  • 6. X. Ding, G.-Q. Chen, P. Lou, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics, I, II, Acta Math. Sci. 5 (1985), 415-432, 433-472. MR 922139 (89f:76006)
  • 7. X. Ding, G.-Q. Chen, P. Lou, Convergence of the fraction step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Commun. Math. Phys. 121 (1989), 63-84. MR 985615 (90d:65168)
  • 8. R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys. 91 (1983), 1-30. MR 719807 (85i:35118)
  • 9. R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal. 82 (1983), 27-70. MR 684413 (84k:35091)
  • 10. P. Jiang, D. Wang, Formation of singularities of solutions to the three-dimensional Euler-Boltzmann equations in radiation hydrodynamics, Nonlinearity 23 (2010), 809-821. MR 2602015 (2011c:76093)
  • 11. S. Jiang, X. H. Zhong, Local existence and finite-time blow-up in multidimensional radiation hydrodynamics, J. Math. Fluid. Mech. 9 (2007), 543-564. MR 2374158 (2009h:76232)
  • 12. S. Kawashima, S. Nishibata, Cauchy problem for a model system of radiating gas: weak solution with a jump and classical solutions, Math. Model Mech. Appl. Sci. 9 (1999), 69-91. MR 1671523 (99m:35151)
  • 13. S. Kawashima, S. Nishibata, Shock wave for a model system of the radiation gas, SIAM. J. Math. Anal. 30, No. 1 (1999), 95-117. MR 1646685 (99h:35133)
  • 14. P.-L. Lions, B. Perthame, E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996), 599-638. MR 1383202 (97e:35107)
  • 15. P.-L. Lions, B. Perthame, E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Commun. Math. Phys. 163 (1994), 415-431. MR 1284790 (95c:76093)
  • 16. T. Makino, S. Takeno, Initial boundary value problem for the spherically symmetric motion of isentropic gas, Japan J. Indust. Appl. Math. 11 (1994), 171-183. MR 1266527 (95h:76095)
  • 17. O. Mihalas, B. W. Mihalas, Foundations of Radiation Hydrodynamics, Oxford Univ. Press, New York, Oxford, 1984. MR 781346 (86h:85004)
  • 18. G. C. Pomraning, The Equation of Radiation Hydrodynamics, Pergamon Press, 1973.
  • 19. D. Wang, Global solutions to the Euler-Poisson equations of two-carrier types in one dimension, Z. angew. Math. Phys. 48 (1997), 680-693. MR 1471476 (98f:35101)
  • 20. B. Zhang, Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices, Commun. Math. Phys. 157 (1993), 1-22. MR 1244856 (95e:82080)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 41A63, 78A40, 76N15, 76X05, 74G25, 54D30

Retrieve articles in all journals with MSC (2000): 41A63, 78A40, 76N15, 76X05, 74G25, 54D30


Additional Information

Peng Jiang
Affiliation: Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China, and Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Email: syepmathjp@yahoo.com.cn

Dehua Wang
Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Email: dwang@math.pitt.edu

DOI: https://doi.org/10.1090/S0033-569X-2011-01227-2
Keywords: Radiation hydrodynamics, Euler equations, Boltzmann equation, global weak entropy solution, Godunov scheme, compensated compactness
Received by editor(s): April 2, 2010
Published electronically: August 26, 2011
Article copyright: © Copyright 2011 Brown University
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society