Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 

 

Action of Hecke operators on theta-functions with rational characteristics


Author: A. N. Andrianov
Translated by: the author
Original publication: Algebra i Analiz, tom 15 (2003), nomer 5.
Journal: St. Petersburg Math. J. 15 (2004), 715-732
MSC (2000): Primary 11F27, 11F46, 11F60, 11F66
Published electronically: August 2, 2004
MathSciNet review: 2068791
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The explicit formulas for the transformation of theta-functions of integral positive definite quadratic forms under the action of regular Hecke operators, obtained in the author's earlier paper (1996), are converted to transformation formulas for the theta-functions with rational characteristics (the theta-series) viewed as Siegel modular forms. As applications, sequences of invariant subspaces and eigenfunctions for all regular Hecke operators on spaces of theta-series are constructed.


References [Enhancements On Off] (What's this?)

  • 1. A. N. Andrianov, Multiplicative arithmetic of Siegel’s modular forms, Uspekhi Mat. Nauk 34 (1979), no. 1(205), 67–135 (Russian). MR 525651
  • 2. Anatolij N. Andrianov, Quadratic forms and Hecke operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 286, Springer-Verlag, Berlin, 1987. MR 884891
  • 3. A. N. Andrianov, Composition of solutions of quadratic Diophantine equations, Uspekhi Mat. Nauk 46 (1991), no. 2(278), 3–40, 240 (Russian); English transl., Russian Math. Surveys 46 (1991), no. 2, 1–44. MR 1125271, 10.1070/RM1991v046n02ABEH002789
  • 4. A. N. Andrianov, Multiplicative decompositions of integral representations of binary quadratic forms, Algebra i Analiz 5 (1993), no. 1, 81–108 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 5 (1994), no. 1, 71–95. MR 1220490
  • 5. A. N. Andrianov, Symmetries of harmonic theta functions of integer-valued quadratic forms, Uspekhi Mat. Nauk 50 (1995), no. 4(304), 3–44 (Russian); English transl., Russian Math. Surveys 50 (1995), no. 4, 661–700. MR 1357882, 10.1070/RM1995v050n04ABEH002578
  • 6. A. N. Andrianov, Harmonic theta functions and Hecke operators, Algebra i Analiz 8 (1996), no. 5, 1–31 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 5, 695–720. MR 1428987
  • 7. -, Maass theta-series and Hecke operators, Preprint Series no. 48, Max-Planck-Inst. Math., Bonn, 2002.
  • 8. Riccardo Salvati Manni and Jaap Top, Cusp forms of weight 2 for the group Γ₂(4,8), Amer. J. Math. 115 (1993), no. 2, 455–486. MR 1216438, 10.2307/2374865
  • 9. Hiroyuki Yoshida, Siegel’s modular forms and the arithmetic of quadratic forms, Invent. Math. 60 (1980), no. 3, 193–248. MR 586427, 10.1007/BF01390016

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 11F27, 11F46, 11F60, 11F66

Retrieve articles in all journals with MSC (2000): 11F27, 11F46, 11F60, 11F66


Additional Information

A. N. Andrianov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg, 191023, Russia
Email: anandr@pdmi.ras.ru

DOI: https://doi.org/10.1090/S1061-0022-04-00828-3
Keywords: Hecke operators, Siegel modular forms, theta functions of quadratic forms, zeta functions of modular forms
Received by editor(s): April 23, 2003
Published electronically: August 2, 2004
Additional Notes: Supported in part by RFBR (grant no. 02-01-00087) and by SFB 478 “Geometrische Structuren in der Mathematik”, Westfälische Wilhelms-Universität Münster.
Article copyright: © Copyright 2004 American Mathematical Society