Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

On the nonstationary Maxwell system in domains with edges


Author: S. Matyukevich
Translated by: B. A. Plamenevskii
Original publication: Algebra i Analiz, tom 15 (2003), nomer 6.
Journal: St. Petersburg Math. J. 15 (2004), 875-913
MSC (2000): Primary 35Q60
DOI: https://doi.org/10.1090/S1061-0022-04-00837-4
Published electronically: November 15, 2004
MathSciNet review: 2044633
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. B. A. Plamenevskii, On the Dirichlet problem for the wave equation in a cylinder with edges, Algebra i Analiz 10 (1998), no. 2, 197-228; English transl., St. Petersburg Math. J. 10 (1999), no. 2, 373-397; Corrections, Algebra i Analiz 10 (1998), no. 3, 224. (Russian) MR 1629407 (99i:35087a); MR 628054 (99i:35087b)
  • 2. A. Yu. Kokotov and B. A. Plamenevskii, On the Cauchy-Dirichlet problem for hyperbolic systems in a wedge, Algebra i Analiz 11 (1999), no. 3, 140-196; English transl., St. Petersburg Math. J. 11 (2000), no. 3, 497-534. MR 1711368 (2000j:35170)
  • 3. A. Yu. Kokotov, P. Neittaanmyaki, and B. A. Plamenevskii, Problems of diffraction on a cone: asymptotic behavior of the solutions near the vertex, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 259 (1999), 122-145; English transl., J. Math. Sci. 109 (2002), no. 5, 1894-1910. MR 1754360 (2001m:35195)
  • 4. -, The Neumann problem for the wave equation in a cone, Function Theory and Applications, Probl. Mat. Anal., vyp. 20, S.-Peterburg. Gos. Univ., St. Petersburg, 2000, pp. 71-110; English transl., J. Math. Sci. 102 (2000), no. 5, 4400-4428. MR 1807064 (2002k:35180)
  • 5. -, On the Neumann problem for hyperbolic systems in a wedge, Dokl. Akad. Nauk 383 (2002), no. 5, 608-611. (Russian) MR 1930107 (2003e:35177)
  • 6. M. S. Agranovich and M. I. Vishik, Elliptic problems with a parameter and parabolic problems of general type, Uspekhi Mat. Nauk 19 (1964), no. 3, 53-161; English transl. in Russian Math. Surveys 19 (1964), no. 3. MR 0192188 (33:415)
  • 7. M. Sh. Birman and M. Z. Solomyak, $L^2$-theory of the Maxwell operator in arbitrary domains, Uspekhi Mat. Nauk 42 (1987), no. 6 (258), 62-76; English transl., Russian Math. Surveys 42 (1987), no. 6, 75-96. MR 0933995 (89e:35127)
  • 8. I. S. Gudovich, S. G. Krein, and I. M. Kulikov, Boundary value problems for the Maxwell equations, Dokl. Akad. Nauk SSSR 207 (1972), no. 2, 321-324; English transl., Soviet Phys. Dokl. 17 (1972), 1053-1055 (1973). MR 0316892 (47:5440)
  • 9. S. I. Matyukevich, On a nonstationary Maxwell system in a wedge, Vestnik S.-Peterburg. Univ. Ser. 1 2000, vyp. 1, 35-43; English transl., Vestnik St. Petersburg Univ. Math. 33 (2000), no. 1, 16-22 (2001). MR 1823725 (2002e:35225)
  • 10. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch. Rational Mech. Anal. 151 (2000), 221-276. MR 1753704 (2002c:78005)
  • 11. V. A. Kozlov, V. G. Maz'ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, Math. Surveys Monogr., vol. 85, Amer. Math. Soc., Providence, RI, 2001. MR 1788991 (2001i:35069)
  • 12. S. A. Nazarov and B. A. Plamenevskii, Elliptic problems in domains with piecewise smooth boundaries, ``Nauka'', Moscow, 1991. (Russian) MR 1283387 (95h:35001)
  • 13. -, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., vol. 13, Walter de Gruyter, Berlin, 1994. MR 1283387 (95h:35001)
  • 14. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. 1, McGraw-Hill Book Co., Inc., New York etc., 1954. MR 0061695 (15:868a)
  • 15. V. S. Vladimirov, The equations of mathematical physics, ``Nauka'', Moscow, 1981; English transl., ``Mir'', Moscow, 1984. MR 0764399 (86f:00030)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35Q60

Retrieve articles in all journals with MSC (2000): 35Q60


Additional Information

S. Matyukevich
Affiliation: St. Petersburg State University, Physics Department, Division of Mathematical Physics, St. Petersburg, Russia
Email: matsi@front.ru, matsi@math.nw.ru

DOI: https://doi.org/10.1090/S1061-0022-04-00837-4
Keywords: Ideal conductive boundary, a priori estimates
Received by editor(s): April 23, 2003
Published electronically: November 15, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society