Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 

 

Spectral boundary-value problems for the Dirac system with a singular potential


Authors: M. S. Agranovich and G. Rozenblum
Translated by: V. I. Vasyunin
Original publication: Algebra i Analiz, tom 16 (2004), nomer 1.
Journal: St. Petersburg Math. J. 16 (2005), 25-57
MSC (2000): Primary 35Q40
Published electronically: December 14, 2004
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR 0407617
  • 2. R. Szmytkowski, Metoda R-macierzy dla róvnan Schrödingera i Diraca, Politechnika Gdanska, Gdansk, 1999.
  • 3. R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
  • 4. M. S. Agranovich, Spectral problems for the Dirac system with a spectral parameter in the local boundary conditions, Funktsional. Anal. i Prilozhen. 35 (2001), no. 3, 1–18, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 35 (2001), no. 3, 161–175. MR 1864984, 10.1023/A:1012368826639
  • 5. Victor Ivriĭ, Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary, Lecture Notes in Mathematics, vol. 1100, Springer-Verlag, Berlin, 1984. MR 771297
  • 6. M. Š. Birman and M. Z. Solomjak, Spectral asymptotics of nonsmooth elliptic operators. I, II, Trudy Moskov. Mat. Obšč. 27 (1972), 3–52; ibid. 28 (1973), 3–34 (Russian). MR 0364898
  • 7. Bernd Thaller, The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. MR 1219537
  • 8. H. Kalf, U.-W. Schmincke, J. Walter, and R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Springer, Berlin, 1975, pp. 182–226. Lecture Notes in Math., Vol. 448. MR 0397192
  • 9. G. Nenciu, Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms, Comm. Math. Phys. 48 (1976), no. 3, 235–247. MR 0421456
  • 10. G. V. Rozenbljum, Distribution of the discrete spectrum of singular differential operators, Izv. Vysš. Učebn. Zaved. Matematika 1(164) (1976), 75–86 (Russian). MR 0430557
  • 11. Gen Nakamura and Tetsuo Tsuchida, Uniqueness for an inverse boundary value problem for Dirac operators, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1327–1369. MR 1765140, 10.1080/03605300008821551
  • 12. Jean Dolbeault, Maria J. Esteban, and Eric Séré, On the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal. 174 (2000), no. 1, 208–226. MR 1761368, 10.1006/jfan.1999.3542
  • 13. Volker Vogelsang, Remark on essential selfadjointness of Dirac operators with Coulomb potentials, Math. Z. 196 (1987), no. 4, 517–521. MR 917234, 10.1007/BF01160893
  • 14. F. J. Narcowich, Mathematical theory of the 𝑅 matrix. I. The eigenvalue problem, J. Mathematical Phys. 15 (1974), 1626–1634. MR 0386536
  • 15. M. S. Agranovich, Spectral problems for second-order strongly elliptic systems in domains with smooth and nonsmooth boundaries, Uspekhi Mat. Nauk 57 (2002), no. 5(347), 3–78 (Russian, with Russian summary); English transl., Russian Math. Surveys 57 (2002), no. 5, 847–920. MR 1992082, 10.1070/RM2002v057n05ABEH000552
  • 16. Peter Hamacher and Jürgen Hinze, Finite-volume variational method for the Dirac equation, Phys. Rev. A (3) 44 (1991), no. 3, 1705–1711. MR 1121458, 10.1103/PhysRevA.44.1705
  • 17. Upke-Walther Schmincke, Essential selfadjointness of Dirac operators with a strongly singular potential, Math. Z. 126 (1972), 71–81. MR 0304896
  • 18. Upke-Walther Schmincke, Essential selfadjointness of Dirac operators with a strongly singular potential, Math. Z. 126 (1972), 71–81. MR 0304896
  • 19. M. S. Agranovich, Elliptic boundary problems, Partial differential equations, IX, Encyclopaedia Math. Sci., vol. 79, Springer, Berlin, 1997, pp. 1–144, 275–281. Translated from the Russian by the author. MR 1481215, 10.1007/978-3-662-06721-5_1
  • 20. Rainer Wüst, A convergence theorem for selfadjoint operators applicable to Dirac operators with cutoff potentials, Math. Z. 131 (1973), 339–349. MR 0355655
  • 21. Rainer Wüst, Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials, Math. Z. 141 (1975), 93–98. MR 0365233
  • 22. Rainer Wüst, Dirac operations with strongly singular potentials. Distinguished self-adjoint extensions constructed with a spectral gap theorem and cut-off potentials, Math. Z. 152 (1977), no. 3, 259–271. MR 0437948
  • 23. M. Klaus and R. Wüst, Characterization and uniqueness of distinguished selfadjoint extensions of Dirac operators, Comm. Math. Phys. 64 (1978/79), no. 2, 171–176. MR 519923
  • 24. M. Klaus and R. Wüst, Spectral properties of Dirac operators with singular potentials, J. Math. Anal. Appl. 72 (1979), no. 1, 206–214. MR 552332, 10.1016/0022-247X(79)90284-1
  • 25. Upke-Walther Schmincke, Distinguished selfadjoint extensions of Dirac operators, Math. Z. 129 (1972), 335–349. MR 0326448
  • 26. M. A. Krasnosel′skiĭ, P. P. Zabreĭko, E. I. Pustyl′nik, and P. E. Sobolevskiĭ, Integralnye operatory v prostranstvakh summiruemykh funktsii, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0206751
  • 27. H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
  • 28. P. Grisvard, Caractérisation de quelques espaces d’interpolation, Arch. Rational Mech. Anal. 25 (1967), 40–63 (French). MR 0213864
  • 29. R. Seeley, Interpolation in 𝐿^{𝑝} with boundary conditions, Studia Math. 44 (1972), 47–60. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. MR 0315432
  • 30. L. R. Volevich and S. G. Gindikin, Obobshchennye funktsii i uravneniya v svertkakh, Fizmatlit “Nauka”, Moscow, 1994 (Russian, with Russian summary). MR 1379334
  • 31. M. Š. Birman, Scattering problems for differential operators with constant coefficients, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 1–16 (Russian). MR 0253083
  • 32. I. C. Gohberg and M. G. Kreĭn, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0220070
  • 33. Joachim Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR 923320
  • 34. Volker Vogelsang, Selfadjoint extensions of Dirac operators for nonspherically symmetric potentials in Coulomb scattering, Integral Equations Operator Theory 10 (1987), no. 6, 841–858. MR 911995, 10.1007/BF01196123
  • 35. G. Nenciu, Distinguished self-adjoint extension for Dirac operator with potential dominated by multicenter Coulomb potentials, Helv. Phys. Acta 50 (1977), no. 1, 1–3. MR 0462346
  • 36. M. Klaus, Dirac operators with several Coulomb singularities, Helv. Phys. Acta 53 (1980), no. 3, 463–482 (1981). MR 611770
  • 37. Victor Ivrii, Microlocal analysis and precise spectral asymptotics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1631419
  • 38. I. M. Gel′fand, R. A. Minlos, and Z. Ja. Šapiro, Predstavleniya gruppy vrashcheni i gruppy Lorentsa, ikh primeneniya, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958 (Russian). MR 0114876
  • 39. V. Ya. Ivriĭ, Exact spectral asymptotics for elliptic operators acting in vector bundles, Funktsional. Anal. i Prilozhen. 16 (1982), no. 2, 30–38, 96 (Russian). MR 659163

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35Q40

Retrieve articles in all journals with MSC (2000): 35Q40


Additional Information

M. S. Agranovich
Affiliation: Moscow Institute of Electronics and Mathematics, Moscow 109028, Russia
Email: magran@orc.ru

G. Rozenblum
Affiliation: Department of Mathematics, Chalmers University of Technology, Göteborg 41296, Sweden
Email: grigori@math.chalmers.se

DOI: https://doi.org/10.1090/S1061-0022-04-00843-X
Keywords: Dirac operator, Coulomb singularity, boundary-value problems, selfadjoint extensions, behavior of eigenvalues.
Received by editor(s): September 20, 2003
Published electronically: December 14, 2004
Additional Notes: The first author was supported by RFBR (grant no. 01-01-00284) and by a grant of the Swedish Research Council.
Dedicated: Dedicated to Mikhail Shlemovich Birman on the occasion of his 75th birthday
Article copyright: © Copyright 2004 American Mathematical Society