Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Spectral boundary-value problems for the Dirac system with a singular potential


Authors: M. S. Agranovich and G. Rozenblum
Translated by: V. I. Vasyunin
Original publication: Algebra i Analiz, tom 16 (2004), nomer 1.
Journal: St. Petersburg Math. J. 16 (2005), 25-57
MSC (2000): Primary 35Q40
DOI: https://doi.org/10.1090/S1061-0022-04-00843-X
Published electronically: December 14, 2004
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., vol. 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617 (53:11389)
  • 2. R. Szmytkowski, Metoda R-macierzy dla róvnan Schrödingera i Diraca, Politechnika Gdanska, Gdansk, 1999.
  • 3. R. Courant and D. Hilbert, Methods of mathematical physics. Vol. 1, Intersci. Publishers, Inc., New York, NY, 1953. MR 0065391 (16:426a)
  • 4. M. S. Agranovich, Spectral problems for the Dirac system with a spectral parameter in the local boundary conditions, Funktsional. Anal. i Prilozhen. 35 (2001), no. 3, 1-18; English transl., Funct. Anal. Appl. 35 (2001), no. 3, 161-175. MR 1864984 (2003a:81034)
  • 5. V. Ivrii, Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary, Lecture Notes in Math., vol. 1100, Springer-Verlag, Berlin, 1984. MR 0771297 (86h:58139)
  • 6. M. Sh. Birman and M. Z. Solomyak, Spectral asymptotics of nonsmooth elliptic operators. I, II, Trudy Moskov. Mat. Obshch. 27 (1972), 3-52; ibid. 28 (1973), 3-34; English transl., Trans. Moscow Math. Soc. 27 (1975), 1-52; ibid. 28 (1975), 1-32. MR 0364898 (51:1152)
  • 7. B. Thaller, The Dirac equation, Springer-Verlag, Berlin, 1992. MR 1219537 (94k:81056)
  • 8. H. Kalf, U.-W. Schmincke, J. Walter, and R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974), Lecture Notes in Math., vol. 448, Springer-Verlag, Berlin, 1975, pp. 182-226. MR 0397192 (53:1051)
  • 9. G. Nenciu, Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms, Comm. Math. Phys. 48 (1976), 235-247. MR 0421456 (54:9459)
  • 10. G. Rozenblum, Distribution of the discrete spectrum of singular differential operators, Izv. Vyssh. Uchebn. Zaved. Mat. 1976, no. 1 (164), 75-80; English transl., Soviet Math. (Izv. VUZ) 20 (1976), no. 1, 63-71. MR 0430557 (55:3562)
  • 11. G. Nakamura and T. Tsuchida, Uniqueness for an inverse boundary value problem for Dirac operators, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1327-1369. MR 1765140 (2001g:35265)
  • 12. J. Dolbeault, M. J. Esteban, and E. Séré, On the eigenvalues of operators with gaps. Application to Dirac operators, J. Funct. Anal. 174 (2000), 208-226. MR 1761368 (2001e:47040)
  • 13. V. Vogelsang, Remark on essential selfadjointness of Dirac operators with Coulomb potentials, Math. Z. 196 (1987), 517-521. MR 0917234 (88k:35149)
  • 14. F. J. Narcowich, Mathematical theory of $R$-matrix. I. The eigenvalue problem; II. The $R$-matrix and its properties, J. Math. Phys. 15 (1974), no. 10, 1626-1634; 1635-1642. MR 0386536 (52:7390a)
  • 15. M. S. Agranovich, Spectral problems for second-order strongly elliptic systems in domains with smooth and nonsmooth boundaries, Uspekhi Mat. Nauk 57 (2002), no. 5, 3-78; English transl., Russian Math. Surveys 57 (2002), no. 5, 847-920. MR 1992082 (2004e:35168)
  • 16. P. Hamacher and J. Hinze, Finite-volume variational method for the Dirac equation, Phys. Rev. A (3) 44 (1991), no. 9, 1705-1711. MR 1121458 (92d:81039)
  • 17. U.-W. Schmincke, Essential selfadjointness of Dirac operators with a strongly singular potential, Math. Z. 126 (1972), 71-81. MR 0304896 (46:4028)
  • 18. A. M. Boutet de Monvel and R. Purice, A distinguished self-adjoint extension for the Dirac operator with strong local singularities and arbitrary behaviour at infinity, Rep. Math. Phys. 34 (1994), 351-360. MR 0304896 (46:4028)
  • 19. M. S. Agranovich, Elliptic boundary problems, Partial Differential Equations, 9, Encyclopaedia Math. Sci., vol. 79, Springer-Verlag, Berlin, 1997, pp. 1-144. MR 1481215 (99a:35056)
  • 20. R. Wüst, A convergence theorem for selfadjoint operators applicable to Dirac operators with cutoff potentials, Math. Z. 131 (1973), 339-349. MR 0355655 (50:8129)
  • 21. -, Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials, Math. Z. 141 (1975), 93-98. MR 0365233 (51:1486)
  • 22. -, Dirac operations with strongly singular potentials, Math. Z. 152 (1977), 259-271. MR 0437948 (55:10869)
  • 23. M. Klaus and R. Wüst, Characterization and uniqueness of distinguished selfadjoint extensions of Dirac operators, Comm. Math. Phys. 64 (1979), 171-176. MR 0519923 (80k:81025)
  • 24. -, Spectral properties of Dirac operators with singular potentials, J. Math. Anal. Appl. 72 (1979), 206-214. MR 0552332 (81b:35082)
  • 25. U.-W. Schmincke, Distinguished selfadjoint extensions of Dirac operators, Math. Z. 129 (1972), 335-349. MR 0326448 (48:4792)
  • 26. M. A. Krasnosel'skii, P. P. Zabreiko, E. I. Pustyl'nik, and P. E. Sobolevskii, Integral operators in spaces of summable functions, ``Nauka'', Moscow, 1966; English transl., Noordhoff Internat. Publishing, Leiden, 1976. MR 0206751 (34:6568)
  • 27. H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag Wiss., Berlin, 1978. MR 0500580 (80i:46032a)
  • 28. P. Grisvard, Caractérisation de quelques espaces d'interpolation, Arch. Rational Mech. Anal. 25 (1967), 40-63. MR 0213864 (35:4718)
  • 29. R. T. Seeley, Interpolation in $L_p$ with boundary conditions, Studia Math. 44 (1972), 47-60. MR 0315432 (47:3981)
  • 30. L. R. Volevich and S. G. Gindikin, Generalized functions and convolution equations, ``Nauka'', Moscow, 1994. (Russian) MR 1379334 (97g:46041)
  • 31. M. Sh. Birman, Scattering problems for differential operators with constant coefficients, Funktsional. Anal. i Prilozhen. 3 (1969), no. 3, 1-16; English transl., Funct. Anal. Appl. 3 (1969), no. 3, 167-180. MR 0253083 (40:6298)
  • 32. I. Ts. Gohberg and M. G. Krein, Introduction to the theory of linear non-selfadjoint operators in Hilbert space, ``Nauka'', Moscow, 1965; English transl., Amer. Math. Soc., Providence, RI, 1969. MR 0220070 (36:3137)
  • 33. J. Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Math., vol. 1258, Springer-Verlag, Berlin, 1987. MR 0923320 (89b:47070)
  • 34. V. Vogelsang, Selfadjoint extensions of Dirac operators for nonspherically symmetric potentials in Coulomb scattering, Integral Equations Operator Theory 10 (1987), 841-858. MR 0911995 (89b:35133)
  • 35. G. Nenciu, Distinguished self-adjoint extension for Dirac operator with potential dominated by multicenter Coulomb potentials, Helv. Phys. Acta 50 (1977), 1-3. MR 0462346 (57:2320)
  • 36. M. Klaus, Dirac operators with several Coulomb singularities, Helv. Phys. Acta 53 (1980), 463-482 (1981). MR 0611770 (83e:81023)
  • 37. V. Ivrii, Microlocal analysis and precise spectral asymptotics, Springer-Verlag, Berlin, 1998. MR 1631419 (99e:58193)
  • 38. I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the rotation group and of the Lorentz group, and their applications, Fizmatgiz, Moscow, 1958. (Russian) MR 0114876 (22:5694)
  • 39. V. Ya. Ivrii, Exact spectral asymptotics for elliptic operators acting in vector bundles, Funktsional. Anal. i Prilozhen. 16 (1982), no. 2, 30-38; English transl., Funct. Anal. Appl. 16 (1982), no. 2, 101-108. MR 0659163 (84a:58087)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35Q40

Retrieve articles in all journals with MSC (2000): 35Q40


Additional Information

M. S. Agranovich
Affiliation: Moscow Institute of Electronics and Mathematics, Moscow 109028, Russia
Email: magran@orc.ru

G. Rozenblum
Affiliation: Department of Mathematics, Chalmers University of Technology, Göteborg 41296, Sweden
Email: grigori@math.chalmers.se

DOI: https://doi.org/10.1090/S1061-0022-04-00843-X
Keywords: Dirac operator, Coulomb singularity, boundary-value problems, selfadjoint extensions, behavior of eigenvalues.
Received by editor(s): September 20, 2003
Published electronically: December 14, 2004
Additional Notes: The first author was supported by RFBR (grant no. 01-01-00284) and by a grant of the Swedish Research Council.
Dedicated: Dedicated to Mikhail Shlemovich Birman on the occasion of his 75th birthday
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society