Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Pairs of selfadjoint operators and their invariants

Authors: D. Alpay and I. Gohberg
Original publication: Algebra i Analiz, tom 16 (2004), nomer 1.
Journal: St. Petersburg Math. J. 16 (2005), 59-104
MSC (2000): Primary 34L25, 81U40, 47A56
Published electronically: December 14, 2004
MathSciNet review: 2069002
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A trace formula is proved for pairs of selfadjoint operators that are close to each other in a certain sense. An important role is played by a function analytic in the open upper half-plane and with positive imaginary part there. This function, called the characteristic function of the pair, coincides with Kre{\u{\i}}\kern.15emn's $Q$-function in the case where the selfadjoint operators are canonical extensions of a common simple and closed Hermitian operator. Special emphasis is given to the finite-dimensional case. Relationships with Kre{\u{\i}}\kern.15emn's spectral shift function are also considered. Finally, the case of canonical differential expressions is discussed briefly. In this case, the function ${N}$ may be chosen to be the Weyl function of the canonical differential expression.

References [Enhancements On Off] (What's this?)

  • 1. Daniel Alpay, Aad Dijksma, and Heinz Langer, Classical Nevanlinna-Pick interpolation with real interpolation points, Operator theory and interpolation (Bloomington, IN, 1996) Oper. Theory Adv. Appl., vol. 115, Birkhäuser, Basel, 2000, pp. 1–50. MR 1766806
  • 2. Daniel Alpay and Harry Dym, Hilbert spaces of analytic functions, inverse scattering and operator models. I, Integral Equations Operator Theory 7 (1984), no. 5, 589–641. MR 766625, 10.1007/BF01195919
  • 3. Daniel Alpay and Israel Gohberg, Unitary rational matrix functions, Topics in interpolation theory of rational matrix-valued functions, Oper. Theory Adv. Appl., vol. 33, Birkhäuser, Basel, 1988, pp. 175–222. MR 960699, 10.1007/978-3-0348-5469-6_5
  • 4. D. Alpay and I. Gohberg, Inverse spectral problem for differential operators with rational scattering matrix functions, J. Differential Equations 118 (1995), no. 1, 1–19. MR 1329400, 10.1006/jdeq.1995.1064
  • 5. D. Alpay and I. Gohberg, Inverse scattering problem for differential operators with rational scattering matrix functions, Singular integral operators and related topics (Tel Aviv, 1995) Oper. Theory Adv. Appl., vol. 90, Birkhäuser, Basel, 1996, pp. 1–18. MR 1413548
  • 6. D. Alpay and I. Gohberg, A relationship between the Nehari and the Carathéodory-Toeplitz extension problems, Integral Equations Operator Theory 26 (1996), no. 3, 249–272. MR 1415031, 10.1007/BF01306543
  • 7. Daniel Alpay and Israel Gohberg, Inverse problems associated to a canonical differential system, Recent advances in operator theory and related topics (Szeged, 1999), Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 1–27. MR 1902792
  • 8. D. Alpay and I. Gohberg, A trace formula for canonical differential expressions, J. Funct. Anal. 197 (2003), no. 2, 489–525. MR 1960423, 10.1016/S0022-1236(02)00083-6
  • 9. D. Alpay, I. Gohberg, M. A. Kaashoek, and A. L. Sakhnovich, Direct and inverse scattering problem for canonical systems with a strictly pseudo-exponential potential, Math. Nachr. 215 (2000), 5–31. MR 1768201, 10.1002/1522-2616(200007)215:1<5::AID-MANA5>3.3.CO;2-D
  • 10. D. Alpay, I. Gohberg, and L. Sakhnovich, Inverse scattering problem for continuous transmission lines with rational reflection coefficient function, Recent developments in operator theory and its applications (Winnipeg, MB, 1994) Oper. Theory Adv. Appl., vol. 87, Birkhäuser, Basel, 1996, pp. 1–16. MR 1399354
  • 11. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404. MR 0051437, 10.1090/S0002-9947-1950-0051437-7
  • 12. N. Aronszajn and W. F. Donoghue, A supplement to the paper on exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. Analyse Math. 12 (1964), 113–127. MR 0168769
  • 13. -, On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. Anal. Math. 5 (1956/1957), 321-388.
  • 14. Harm Bart, Israel Gohberg, and Marinus A. Kaashoek, Minimal factorization of matrix and operator functions, Operator Theory: Advances and Applications, vol. 1, Birkhäuser Verlag, Basel-Boston, Mass., 1979. MR 560504
  • 15. S. V. Belyi and E. R. Tsekanovskii, Realization theorems for operator-valued 𝑅-functions, New results in operator theory and its applications, Oper. Theory Adv. Appl., vol. 98, Birkhäuser, Basel, 1997, pp. 55–91. MR 1478466
  • 16. S. V. Belyi and E. R. Tsekanovskii, On classes of realizable operator-valued 𝑅-functions, Operator theory and interpolation (Bloomington, IN, 1996) Oper. Theory Adv. Appl., vol. 115, Birkhäuser, Basel, 2000, pp. 85–112. MR 1766808
  • 17. M. Sh. Birman and D. R. Yafaev, The spectral shift function. The papers of M. G. Kreĭn and their further development, Algebra i Analiz 4 (1992), no. 5, 1–44 (Russian); English transl., St. Petersburg Math. J. 4 (1993), no. 5, 833–870. MR 1202723
  • 18. Louis de Branges, Perturbations of self-adjoint transformations, Amer. J. Math. 84 (1962), 543–560. MR 0154132
  • 19. Louis de Branges, Espaces hilbertiens de fonctions entières, Masson et Cie. Éditeurs, Paris, 1972 (French). Traduit de l’anglais par R. Parrot. MR 0390739
  • 20. Louis de Branges and James Rovnyak, Canonical models in quantum scattering theory, Perturbation Theory and its Applications in Quantum Mechanics (Proc. Adv. Sem. Math. Res. Center, U.S. Army, Theoret. Chem. Inst., Univ. of Wisconsin, Madison, Wis., 1965) Wiley, New York, 1966, pp. 295–392. MR 0244795
  • 21. Louis de Branges and James Rovnyak, Square summable power series, Holt, Rinehart and Winston, New York-Toronto, Ont.-London, 1966. MR 0215065
  • 22. Richard W. Carey, A unitary invariant for pairs of self-adjoint operators, J. Reine Angew. Math. 283/284 (1976), 294–312. MR 0415366
  • 23. J. Dieudonné, Éléments d’analyse. Tome II: Chapitres XII à XV, Cahiers Scientifiques, Fasc. XXXI, Gauthier-Villars, Éditeur, Paris, 1968 (French). MR 0235946
  • 24. William F. Donoghue Jr., Monotone matrix functions and analytic continuation, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 207. MR 0486556
  • 25. Harry Dym, 𝐽 contractive matrix functions, reproducing kernel Hilbert spaces and interpolation, CBMS Regional Conference Series in Mathematics, vol. 71, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. MR 1004239
  • 26. Harry Dym and Andrei Iacob, Positive definite extensions, canonical equations and inverse problems, Topics in operator theory systems and networks (Rehovot, 1983) Oper. Theory Adv. Appl., vol. 12, Birkhäuser, Basel, 1984, pp. 141–240. MR 761362
  • 27. Fritz Gesztesy, Konstantin A. Makarov, and Serguei N. Naboko, The spectral shift operator, Mathematical results in quantum mechanics (Prague, 1998) Oper. Theory Adv. Appl., vol. 108, Birkhäuser, Basel, 1999, pp. 59–90. MR 1708788
  • 28. I. Gohberg, P. Lancaster, and L. Rodman, Matrices and indefinite scalar products, Operator Theory: Advances and Applications, vol. 8, Birkhäuser Verlag, Basel, 1983. MR 859708
  • 29. Michael Karow, Self-adjoint operators and pairs of Hermitian forms over the quaternions, Linear Algebra Appl. 299 (1999), no. 1-3, 101–117. MR 1723711, 10.1016/S0024-3795(99)00165-2
  • 30. M. Krein, On Hermitian operators whose deficiency indices are 1, C. R. (Doklady) Acad. Sci. URSS (N.S.) 43 (1944), 323–326. MR 0011170
  • 31. M. Krein, Concerning the resolvents of an Hermitian operator with the deficiency-index (𝑚,𝑚), C. R. (Doklady) Acad. Sci. URSS (N.S.) 52 (1946), 651–654. MR 0018341
  • 32. M. G. Kreĭn, Topics in differential and integral equations and operator theory, Operator Theory: Advances and Applications, vol. 7, Birkhäuser Verlag, Basel, 1983. Edited by I. Gohberg; Translated from the Russian by A. Iacob. MR 815109
  • 33. M. G. Kreĭn, On the trace formula in perturbation theory, Mat. Sbornik N.S. 33(75) (1953), 597–626 (Russian). MR 0060742
  • 34. M. G. Kreĭn, Continuous analogues of propositions on polynomials orthogonal on the unit circle, Dokl. Akad. Nauk SSSR (N.S.) 105 (1955), 637–640 (Russian). MR 0080735
  • 35. M. G. Kreĭn and H. Langer, Über die verallgemeinerten Resolventen und die charakteristische Funktion eines isometrischen Operators im Raume Π_{𝜅}, Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970) North-Holland, Amsterdam, 1972, pp. 353–399. Colloq. Math. Soc. János Bolyai, 5 (German). MR 0423122
  • 36. M. G. Kreĭn and H. Langer, Über die 𝑄-Funktion eines 𝜋-hermiteschen Operators im Raume Π_{𝜅}, Acta Sci. Math. (Szeged) 34 (1973), 191–230 (German). MR 0318958
  • 37. M. G. \cyr{K}reĭn and A. A. \cyr{N}udel′man, Problema momentov Markova i ekstremalnye zadachi, Izdat. “Nauka”, Moscow, 1973 (Russian). Idei i problemy P. L. Chebysheva i A. A. Markova i ikh dalneishee razvitie. [The ideas and problems of P. L. Cebysev and A. A. Markov, and their further development]. MR 0445244
    M. G. Kreĭn and A. A. Nudel′man, The Markov moment problem and extremal problems, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish; Translations of Mathematical Monographs, Vol. 50. MR 0458081
  • 38. M. G. Kreĭn and V. A. Yavryan, Spectral shift functions that arise in perturbations of a positive operator, J. Operator Theory 6 (1981), no. 1, 155–191 (Russian). MR 637009
  • 39. H. Langer and B. Textorius, On generalized resolvents and 𝑄-functions of symmetric linear relations (subspaces) in Hilbert space, Pacific J. Math. 72 (1977), no. 1, 135–165. MR 0463964
  • 40. I. M. Lifšic, On a problem of the theory of perturbations connected with quantum statistics, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 1(47), 171–180 (Russian). MR 0049490
  • 41. M. Lifšic, Some problems of the dynamic theory of nonideal crystal lattices, Nuovo Cimento (10) 3 (1956), no. supplemento, 716–734. MR 0085793
  • 42. Š. N. Saakjan, Theory of resolvents of a symmetric operator with infinite defect numbers, Akad. Nauk Armjan. SSR Dokl. 41 (1965), 193–198 (Russian, with Armenian summary). MR 0196497
  • 43. Saburou Saitoh, Theory of reproducing kernels and its applications, Pitman Research Notes in Mathematics Series, vol. 189, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. MR 983117
  • 44. T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 34L25, 81U40, 47A56

Retrieve articles in all journals with MSC (2000): 34L25, 81U40, 47A56

Additional Information

D. Alpay
Affiliation: Department of Mathematics, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel

I. Gohberg
Affiliation: School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Ramat-Aviv 69989, Israel

Keywords: Kre\u{\i}n's spectral shift function, the $Q$-function associated with a symmetric operator, the Weyl function
Received by editor(s): October 24, 2003
Published electronically: December 14, 2004
Additional Notes: The research of the second author was supported by the Israel Science Foundation (grant no. 322/00)
Dedicated: Dedicated to Mikhail Birman on the occasion of his 75th birthday, with admiration
Article copyright: © Copyright 2004 American Mathematical Society