Topological and geometric properties of graph-manifolds

Authors:
S. Buyalo and P. Svetlov

Translated by:
the authors

Original publication:
Algebra i Analiz, tom **16** (2004), nomer 2.

Journal:
St. Petersburg Math. J. **16** (2005), 297-340

MSC (2000):
Primary 57N10

Published electronically:
March 9, 2005

MathSciNet review:
2068341

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This is a unified exposition of results (obtained by different authors) on the existence of -injective immersed and embedded surfaces in graph-manifolds, and also of nonpositively curved metrics on graph-manifolds. The basis for unification is provided by the notion of compatible cohomology classes and by a certain difference equation on the graph of a graph-manifold (the BKN-equation). Criteria for seven different properties of graph-manifolds are given at three levels: at the level of compatible cohomology classes; at the level of solutions of the BKN-equation; and in terms of spectral properties of operator invariants of a graph-manifold.

**[B1]**S. V. Buyalo,*Collapsing manifolds of nonpositive curvature. I*, Algebra i Analiz**1**(1989), no. 5, 74–94 (Russian); English transl., Leningrad Math. J.**1**(1990), no. 5, 1135–1155. MR**1036838**

S. V. Buyalo,*Collapsing manifolds of nonpositive curvature. II*, Algebra i Analiz**1**(1989), no. 6, 70–97 (Russian); English transl., Leningrad Math. J.**1**(1990), no. 6, 1371–1399. MR**1047962****[B2]**S. V. Buyalo,*Metrics of nonpositive curvature on graph manifolds, and electromagnetic fields on graphs*, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)**280**(2001), no. Geom. i Topol. 7, 28–72, 299 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.)**119**(2004), no. 2, 141–164. MR**1879256**, 10.1023/B:JOTH.0000008754.27256.5b**[BK1]**S. V. Buyalo and V. L. Kobel′skiĭ,*Geometrization of graph-manifolds. I. Conformal geometrization*, Algebra i Analiz**7**(1995), no. 2, 1–45 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**7**(1996), no. 2, 185–216. MR**1347511****[BK2]**S. V. Buyalo and V. L. Kobel′skiĭ,*Geometrization of graph-manifolds. II. Isometric geometrization*, Algebra i Analiz**7**(1995), no. 3, 96–117 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**7**(1996), no. 3, 387–404. MR**1353491****[BK3]**S. V. Buyalo and V. L. Kobel′skiĭ,*Geometrization of infinite graph-manifolds*, Algebra i Analiz**8**(1996), no. 3, 56–77 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**8**(1997), no. 3, 413–427. MR**1402288****[BK4]**S. V. Buyalo and V. L. Kobel′skiĭ,*Generalized graph-manifolds of nonpositive curvature*, Algebra i Analiz**11**(1999), no. 2, 64–87 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**11**(2000), no. 2, 251–268. MR**1702579****[CE]**Jeff Cheeger and David G. Ebin,*Comparison theorems in Riemannian geometry*, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 9. MR**0458335****[E]**Patrick Eberlein,*Lattices in spaces of nonpositive curvature*, Ann. of Math. (2)**111**(1980), no. 3, 435–476. MR**577132**, 10.2307/1971104**[GW]**Detlef Gromoll and Joseph A. Wolf,*Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature*, Bull. Amer. Math. Soc.**77**(1971), 545–552. MR**0281122**, 10.1090/S0002-9904-1971-12747-7**[JS]**William H. Jaco and Peter B. Shalen,*Seifert fibered spaces in 3-manifolds*, Mem. Amer. Math. Soc.**21**(1979), no. 220, viii+192. MR**539411**, 10.1090/memo/0220**[JLLP]**Alain Jacques, Claude Lenormand, André Lentin, and Jean-François Perrot,*Un résultat extrémal en théorie des permutations*, C. R. Acad. Sci. Paris Sér. A-B**266**(1968), A446–A448 (French). MR**0229711****[J]**Klaus Johannson,*Homotopy equivalences of 3-manifolds with boundaries*, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR**551744****[KL]**Michael Kapovich and Bernhard Leeb,*Actions of discrete groups on nonpositively curved spaces*, Math. Ann.**306**(1996), no. 2, 341–352. MR**1411351**, 10.1007/BF01445254**[L]**Bernhard Leeb,*3-manifolds with(out) metrics of nonpositive curvature*, Invent. Math.**122**(1995), no. 2, 277–289. MR**1358977**, 10.1007/BF01231445**[LW]**John Luecke and Ying-Qing Wu,*Relative Euler number and finite covers of graph manifolds*, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 80–103. MR**1470722****[LY]**H. Blaine Lawson Jr. and Shing Tung Yau,*Compact manifolds of nonpositive curvature*, J. Differential Geometry**7**(1972), 211–228. MR**0334083****[N1]**Walter D. Neumann,*A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves*, Trans. Amer. Math. Soc.**268**(1981), no. 2, 299–344. MR**632532**, 10.1090/S0002-9947-1981-0632532-8**[N2]**Walter D. Neumann,*Commensurability and virtual fibration for graph manifolds*, Topology**36**(1997), no. 2, 355–378. MR**1415593**, 10.1016/0040-9383(96)00014-6**[N3]**Walter D. Neumann,*Immersed and virtually embedded 𝜋₁-injective surfaces in graph manifolds*, Algebr. Geom. Topol.**1**(2001), 411–426 (electronic). MR**1852764**, 10.2140/agt.2001.1.411**[RW]**J. Hyam Rubinstein and Shicheng Wang,*𝜋₁-injective surfaces in graph manifolds*, Comment. Math. Helv.**73**(1998), no. 4, 499–515. MR**1639876**, 10.1007/s000140050066**[Sv1]**P. V. Svetlov,*Graph-manifolds of nonpositive curvature are virtually fibered over a circle*, Algebra i Analiz**14**(2002), no. 5, 188–201 (Russian, with Russian summary); English transl., St. Petersburg Math. J.**14**(2003), no. 5, 847–856. MR**1970339****[Sv2]**-,*Homological and geometric properties of graph-manifolds*, Candidate Dissertation, St. Petersburg, 2002. (Russian)**[Sc]**Peter Scott,*The geometries of 3-manifolds*, Bull. London Math. Soc.**15**(1983), no. 5, 401–487. MR**705527**, 10.1112/blms/15.5.401**[Sch]**Viktor Schroeder,*Rigidity of nonpositively curved graphmanifolds*, Math. Ann.**274**(1986), no. 1, 19–26. MR**834102**, 10.1007/BF01458013**[T]**William P. Thurston,*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, 10.1090/S0273-0979-1982-15003-0**[W]**Friedhelm Waldhausen,*Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II*, Invent. Math. 3 (1967), 308–333; ibid.**4**(1967), 87–117 (German). MR**0235576****[WSY]**Shicheng Wang and Fengchun Yu,*Graph manifolds with non-empty boundary are covered by surface bundles*, Math. Proc. Cambridge Philos. Soc.**122**(1997), no. 3, 447–455. MR**1466648**, 10.1017/S0305004197001709**[WYY]**Yan Wang and Fengchun Yu,*When closed graph manifolds are finitely covered by surface bundles over 𝑆¹*, Acta Math. Sin. (Engl. Ser.)**15**(1999), no. 1, 11–20. MR**1701130**, 10.1007/s10114-999-0057-5

Retrieve articles in *St. Petersburg Mathematical Journal*
with MSC (2000):
57N10

Retrieve articles in all journals with MSC (2000): 57N10

Additional Information

**S. Buyalo**

Affiliation:
St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia

Email:
sbuyalo@pdmi.ras.ru

**P. Svetlov**

Affiliation:
St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia

Email:
svetlov@pdmi.ras.ru

DOI:
https://doi.org/10.1090/S1061-0022-05-00852-6

Keywords:
Immersed and embedded surfaces,
compatible cohomology classes,
BNK-equation

Received by editor(s):
September 2, 2002

Published electronically:
March 9, 2005

Additional Notes:
Supported by CRDF (grant no. RM1-2381-ST-02) and by RFBR (grant no. 02-01-00090).

Article copyright:
© Copyright 2005
American Mathematical Society