Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



On the stability of axially symmetric equilibrium figures of a rotating viscous incompressible fluid

Author: V. A. Solonnikov
Translated by: I. V. Denisova
Original publication: Algebra i Analiz, tom 16 (2004), nomer 2.
Journal: St. Petersburg Math. J. 16 (2005), 377-400
MSC (2000): Primary 35Q30
Published electronically: March 9, 2005
MathSciNet review: 2068344
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if the second variation of the energy functional $R$ (see (2.9)) is positive, then the axially symmetric equilibrium figure of a viscous incompressible capillary fluid is stable. The proof is based on the study of a nonstationary free boundary problem for the Navier-Stokes system with initial data close to the rotation regime of the fluid as a rigid body.

References [Enhancements On Off] (What's this?)

  • 1. A. M. Lyapunov, On stability of ellipsoidal shapes of equilibrium of revolving liquid, Collected Works. Vol. 3, Akad. Nauk SSSR, Moscow, 1959, pp. 5-113. (Russian)
  • 2. P. Appell, Traité de mécanique rationnelle. T. 4, Fasc. I. Figures d'équilibre d'une masse liquide homogène en rotation, Gauthier-Villars, Paris, 1932.
  • 3. R. A. Brown and L. E. Scriven, The shape and stability of rotating liquid drops, Proc. Roy. Soc. London Ser. A 371 (1980), 331-357. MR 0576833 (82m:76027)
  • 4. M. Padula and V. A. Solonnikov, Existence of non-steady flows of an incompressible, viscous drop of fluid in a frame rotating with finite angular velocity, Elliptic and parabolic problems (Rolduc/Gaeta, 2001) World Sci. Publ., River Edge, NJ, 2002, pp. 180–203. MR 1937540,
  • 5. V. A. Solonnikov, A generalized energy estimate in a problem with a free boundary for a viscous incompressible fluid, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 282 (2001), no. Issled. po Lineĭn. Oper. i Teor. Funkts. 29, 216–243, 281 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 120 (2004), no. 5, 1766–1783. MR 1874890,
  • 6. -, The problem of evolution of an isolated liquid mass, Sovrem. Mat. Fund. Naprav. 3 (2003), 43-62. (Russian)
  • 7. A. D. Myshkis (ed.), Hydromechanics of weightlessness, ``Nauka'', Moscow, 1976. (Russian)
  • 8. V. A. Solonnikov, On the justification of the quasistationary approximation in the problem of motion of a viscous capillary drop, Interfaces Free Bound. 1 (1999), no. 2, 125–173. MR 1867129,
  • 9. Vsevolod A. Solonnikov, Lectures on evolution free boundary problems: classical solutions, Mathematical aspects of evolving interfaces (Funchal, 2000) Lecture Notes in Math., vol. 1812, Springer, Berlin, 2003, pp. 123–175. MR 2011035,

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 35Q30

Retrieve articles in all journals with MSC (2000): 35Q30

Additional Information

V. A. Solonnikov
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia

Keywords: Equilibrium figures, free boundary problems, stability
Received by editor(s): August 18, 2003
Published electronically: March 9, 2005
Additional Notes: Supported by RFBR (grant no. 03-01-00638).
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society