Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Sharp Jackson-type inequalities for approximations of classes of convolutions by entire functions of exponential type


Author: O. L. Vinogradov
Translated by: the author
Original publication: Algebra i Analiz, tom 17 (2005), nomer 4.
Journal: St. Petersburg Math. J. 17 (2006), 593-633
MSC (2000): Primary 41A17
DOI: https://doi.org/10.1090/S1061-0022-06-00922-8
Published electronically: May 3, 2006
MathSciNet review: 2173937
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, a new method is introduced for the proof of sharp Jackson-type inequalities for approximation of convolution classes of functions defined on the real line. These classes are approximated by linear operators with values in sets of entire functions of exponential type. In particular, a sharp Jackson-type inequality for the even-order derivatives of the conjugate function is proved. For the uniform and the integral norm, the estimates are sharp even if their left-hand sides are replaced by the best approximation. Sharp inequalities for approximations of periodic functions by trigonometric polynomials and of almost-periodic functions by generalized trigonometric polynomials are special cases of the inequalities mentioned above.


References [Enhancements On Off] (What's this?)

  • 1. N. I. Akhiezer, Lectures in the theory of approximation, 2nd ed., Nauka, Moscow, 1965; English transl. of 1st ed., Theory of approximation, Frederick Ungar Publ. Co., New York, 1956. MR 0188672 (32:6108); MR 0095369 (20:1872)
  • 2. J. Favard, Sur les meilleurs procédés d'approximation de certaines classes des fonctions par des polynômes trigonométriques, Bull. Sci. Math. (2) 61 (1937), 209-224, 243-256.
  • 3. N. I. Akhiezer and M. G. Krein, Best approximation of differentiable periodic functions by trigonometric sums, Dokl. Akad. Nauk SSSR 15 (1937), no. 3, 107-112. (Russian)
  • 4. N. I. Akhiezer, Best approximation of a class of continuous periodic functions, Dokl. Akad. Nauk SSSR 17 (1937), no. 9, 451-453. (Russian)
  • 5. -, Best approximation of analytic functions, Dokl. Akad. Nauk SSSR 18 (1938), no. 4-5, 241-244. (Russian)
  • 6. M. G. Krein, On best approximation of periodic functions, Dokl. Akad. Nauk SSSR 18 (1938), no. 4-5, 245-249. (Russian)
  • 7. B. Sz.-Nagy, Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall, Ber. Verh. Sächs. Akad. Wiss. Leipzig 90 (1938), 103-134.
  • 8. V. K. Dzyadyk, Best approximation on classes of periodic functions that are defined by integrals of a linear combination of absolutely monotonic kernels, Mat. Zametki 16 (1974), no. 5, 691-701; English transl., Math. Notes 16 (1974), no. 5, 1008-1014. MR 0380212 (52:1112)
  • 9. Nguen Tkhi Tkh'eu Khoa, Some extremal problems on classes of functions defined by linear differential operators, Mat. Sb. 180 (1989), no. 10, 1355-1395; English transl., Math. USSR-Sb. 68 (1991), no. 1, 213-255. MR 1025687 (90m:41010)
  • 10. -, The operator $ D(D^2+1^2)\dots(D^2+n^2)$ and trigonometric interpolation, Anal. Math. 15 (1989), no. 4, 291-306. (Russian) MR 1032110 (91d:41002)
  • 11. S. M. Nikol'skii, Approximation of functions in the mean by trigonometrical polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 10 (1946), no. 3, 207-256. (Russian) MR 0017402 (8:149b)
  • 12. Sun Yung-sheng, On the best approximation of classes of functions representable in the convolution form, Dokl. Akad. Nauk SSSR (N. S.) 118 (1958), no. 2, 247-250. (Russian) MR 0103372 (21:2144)
  • 13. M. G. Krein, Best approximation of continuous differentiable functions on the real axis, Dokl. Akad. Nauk SSSR 18 (1938), no. 9, 619-623. (Russian)
  • 14. B. Sz.-Nagy, Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. II. Nichtperiodischer Fall, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 3-24.
  • 15. E. S. Khvostenko, An analogue of A. A. Markov's theorem for the linear-fractional kernels of M. G. Krein, Studies in Contemporary Problems of Summability and Approximation of Functions and their Applications, Dnepropetrovsk. Gos. Univ., Dnepropetrovsk, 1976, pp. 57-63. (Russian) MR 0586563 (58:28521)
  • 16. V. V. Zhuk, Certain exact inequalities between best approximations and moduli of continuity, Sibirsk. Mat. Zh. 12 (1971), no. 6, 1283-1291; English transl., Siberian Math. J. 12 (1971), 924-930. MR 0291710 (45:801)
  • 17. A. A. Ligun, The exact constants of approximation of differentiable periodic functions, Mat. Zametki 14 (1973), no. 1, 21-30; English transl., Math. Notes 14 (1973), 563-569 (1974). MR 0330880 (48:9217)
  • 18. A. Yu. Gromov, Exact constants in the approximation of differentiable functions by entire functions, Studies in Contemporary Problems of Summability and Approximation of Functions and their Applications, Dnepropetrovsk. Gos. Univ., Dnepropetrovsk, 1976, pp. 17-21. (Russian) MR 0614756 (58:29642)
  • 19. V. F. Babenko and A. Yu. Gromov, Exact estimates in the approximation of classes of differentiable functions by entire functions, Studies in Contemporary Problems of Summability and Approximation of Functions and their Applications, Dnepropetrovsk. Gos. Univ., Dnepropetrovsk, 1977, pp. 3-6. (Russian)
  • 20. A. A. Ligun, Exact constants in inequalities of Jackson type, Mat. Zametki 38 (1985), no. 2, 248-256; English transl., Math. Notes 38 (1985), no. 1-2, 648-653. MR 0808893 (87d:41037)
  • 21. N. I. Merlina, Sharp estimates of seminorms and best approximations by entire functions. (Manuscript dep. VINITI 10.04.79, no. 1257-79). (Russian)
  • 22. -, On sharp estimates of seminorms and best approximations by entire functions, Theory of Functions of Complex Variable and Boundary Problems, No. 3, Cheboksary, 1979, pp. 20-26. (Russian)
  • 23. V. V. Zhuk, On the question of the constants in direct theorems of approximation theory for differentiable functions, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1976, vyp. 4, 51-57; English transl. in Vestnik Leningrad Univ. Math. 9 (1981). MR 0430650 (55:3655)
  • 24. -, Approximation of periodic functions, Leningrad. Univ., Leningrad, 1982. (Russian) MR 0665432 (84j:42001)
  • 25. O. L. Vinogradov and V. V. Zhuk, Sharp inequalities connected with estimates for approximations of periodic functions by means of moduli of continuity of their derivatives of odd order with different steps, Nonlinear Equations and Mathematical Analysis, Probl. Mat. Anal., No. 19, S.-Peterburg. Gos. Univ., St. Petersburg, 1999, pp. 69-88; English transl., J. Math. Sci. 101 (2000), no. 2, 2914-2929. MR 1784684 (2002a:41010)
  • 26. -, Sharp Jackson-type inequalities for differentiable functions and minimization of the step of the moduli of continuity, Trudy S.-Peterburg. Mat. Obshch. 8 (2000), 29-51; English transl., Amer. Math. Soc. Transl. Ser. 2, vol. 205, Amer. Math. Soc., Providence, RI, 2002, pp. 23-42. MR 1868027 (2002k:41017)
  • 27. B. M. Levitan, Almost periodic functions, GITTL, Moscow, 1953. (Russian) MR 0060629 (15:700a)
  • 28. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. 1, McGraw-Hill Book Company, Inc., New York etc., 1954. MR 0061695 (15:868a)
  • 29. I. M. Ryzhik and I. S. Gradshtein, Tables of integrals, sums, series and products, 3rd ed., GITTL, Moscow-Leningrad, 1951; English transl., Acad. Press, Inc., San Diego, CA, 2000. MR 0052590 (14:643b); MR 1773820 (2001c:00002)
  • 30. A. F. Timan, Theory of approximation of functions of a real variable, Fizmatgiz, Moscow, 1960; English transl., Dover Publications, Inc., New York, 1994. MR 0117478 (22:8257); MR 1262128 (94j:41001)
  • 31. N. P. Korneichuk, Exact constants in approximation theory, Nauka, Moscow, 1987; English transl., Encyclopedia Math. Appl., vol. 38, Cambridge Univ. Press, Cambridge, 1991. MR 0926687 (89d:41038); MR 1124406 (92m:41002)
  • 32. V. V. Zhuk and G. I. Natanson, The approximation of differentiable periodic functions by linear methods, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1977, vyp. 4, 16-21; English transl. in Vestnik Leningrad Univ. Math. 10 (1982). MR 0467136 (57:7003)
  • 33. S. N. Bernshtein, Absolutely monotonic functions, Collected Works. Vol. 1, Akad. Nauk SSSR, Moscow, 1952, pp. 370-425. (Russian) MR 0048360 (14:2c)
  • 34. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949. MR 0030620 (11:25a)
  • 35. V. V. Zhuk and V. F. Kuzyutin, Approximation of functions and numerical integration, S.-Peterburg. Gos. Univ., St. Petersburg, 1995. (Russian) MR 1664064 (99j:41001)
  • 36. A. Pinkus, $ N$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), vol. 7, Springer-Verlag, Berlin, 1985. MR 0774404 (86k:41001)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 41A17

Retrieve articles in all journals with MSC (2000): 41A17


Additional Information

O. L. Vinogradov
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospect 28, Staryĭ Peterhof, St. Petersburg 198904, Russia
Email: olvin@math.spb.ru

DOI: https://doi.org/10.1090/S1061-0022-06-00922-8
Keywords: Jackson inequalities, sharp constants, entire functions of exponential type
Received by editor(s): November 30, 2004
Published electronically: May 3, 2006
Additional Notes: Supported by the “Universities of Russia” program (project no. ur.04.01.036) and the “Leading scientific schools” program (project no. NSh-2266.2003.1)
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society