Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)



Normality in group rings

Authors: V. A. Bovdi and S. Siciliano
Original publication: Algebra i Analiz, tom 19 (2007), nomer 2.
Journal: St. Petersburg Math. J. 19 (2008), 159-165
MSC (2000): Primary 16S34
Published electronically: February 1, 2008
MathSciNet review: 2333894
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ KG$ be the group ring of a group $ G$ over a commutative ring $ K$ with unity. The rings $ KG$ are described for which $ xx^\sigma=x^\sigma x$ for all $ x=\sum_{g\in G}\alpha_gg\in KG$, where $ x\mapsto x^\sigma=~\sum_{g\in G}\alpha_gf(g)\sigma(g)$ is an involution of $ KG$; here $ f: G\to U(K)$ is a homomorphism and $ \sigma$ is an antiautomorphism of order two of $ G$.

References [Enhancements On Off] (What's this?)

  • 1. S. D. Berman, On the equation 𝑥^{𝑚}=1 in an integral group ring, Ukrain. Mat. Ž. 7 (1955), 253–261 (Russian). MR 0077521
  • 2. A. A. Bovdi, Unitarity of the multiplicative group of an integral group ring, Mat. Sb. (N.S.) 119 (161) (1982), no. 3, 387-400; English transl. in Math. USSR-Sb. 47 (1984). MR 0678835 (84a:16019)
  • 3. A. A. Bovdi, P. M. Gudivok, and M. S. Semirot, Normal group rings, Ukrain. Mat. Zh. 37 (1985), no. 1, 3-8; English transl., Ukrainian Math. J. 37 (1985), no. 1, 1-5. MR 0780906 (86h:16013)
  • 4. V. A. Bovdi, Normal twisted group rings, Dokl. Akad. Nauk Ukrain. SSR Ser. A 7 (1990), 6–8, 87 (Russian, with English summary). MR 1088083
  • 5. Victor Bovdi, Structure of normal twisted group rings, Publ. Math. Debrecen 51 (1997), no. 3-4, 279–293. MR 1485224
  • 6. Marshall Hall Jr., The theory of groups, Chelsea Publishing Co., New York, 1976. Reprinting of the 1968 edition. MR 0414669
  • 7. Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779
  • 8. S. P. Novikov, Algebraic construction and properties of Hermitian analogs of 𝐾-theory over rings with involution from the viewpoint of Hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. I. II, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 253–288; ibid. 34 (1970), 475–500 (Russian); English transl., Math. USSR-Izv. 4 (1970), 257–292; ibid. 4 (1970), 479–505. MR 0292913

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 16S34

Retrieve articles in all journals with MSC (2000): 16S34

Additional Information

V. A. Bovdi
Affiliation: Institute of Mathematics, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
Address at time of publication: Institute of Mathematics and Informatics, College of Nyíregyháza, Sóstói út 31/b, H-4410 Nyíregyháza, Hungary

S. Siciliano
Affiliation: Dipartimento di Matematica “E. De Giorgi”, Università degli Studi di Lecce, Via Provinciale Lecce-Arnesano, 73100-LECCE, Italy

Keywords: Group ring, normality
Received by editor(s): August 31, 2006
Published electronically: February 1, 2008
Additional Notes: This research was supported by OTKA no. T 037202 and no. T 038059
Dedicated: Dedicated to Professor P.M.Gudivok on the occasion of his 70th birthday
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society