Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 

 

$ J_{\lowercase{p},\lowercase{m}}$-inner dilations of matrix-valued functions that belong to the Carathéodory class and admit pseudocontinuation


Authors: D. Z. Arov and N. A. Rozhenko
Translated by: V. Vasyunin
Original publication: Algebra i Analiz, tom 19 (2007), nomer 3.
Journal: St. Petersburg Math. J. 19 (2008), 375-395
MSC (2000): Primary 47A56
Published electronically: March 21, 2008
MathSciNet review: 2340706
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The class $ \ell^{p\times p}$ of matrix-valued functions $ c(z)$ holomorphic in the unit disk $ D=\{{z\in\mathbb{C}:\vert z\vert<1}\}$, having order $ p$, and satisfying $ \operatorname{Re}c(z)\ge 0$ in $ D$ is considered, as well as its subclass $ \ell^{p\times p}\Pi$ of matrix-valued functions $ c(z)\in \ell^{p\times p}$ that have a meromorphic pseudocontinuation $ c_-(z)$ to the complement $ D_e=\{z\in\mathbb{C}:1<\vert z\vert\le \infty\}$ of the unit disk with bounded Nevanlinna characteristic in $ D_e$.

For matrix-valued functions $ c(z)$ of class $ \ell^{p\times p}\Pi$ a representation as a block of a certain $ J_{p,m}$-inner matrix-valued function $ \theta(z)$ is obtained. The latter function has a special structure and is called the $ J_{p,m}$-inner dilation of $ c(z)$. The description of all such representations is given.

In addition, the following special $ J_{p,m}$-inner dilations are considered and described: minimal, optimal, $ *$-optimal, minimal and optimal, minimal and $ *$-optimal. Also, $ J_{p,m}$-inner dilations with additional properties are treated: real, symmetric, rational, or any combination of them under the corresponding restrictions on the matrix-valued function $ c(z)$. The results extend to the case where the open upper half-plane $ \mathbb{C}_+$ is considered instead of the unit disk $ D$. For entire matrix-valued functions $ c(z)$ with  $ \operatorname{Re}c(z) \ge 0$ in  $ \mathbb{C_+}$ and with Nevanlinna characteristic in $ \mathbb{C}_-$, the $ J_{p,m}$-inner dilations in  $ \mathbb{C}_+$ that are entire matrix-valued functions are also described.


References [Enhancements On Off] (What's this?)

  • 1. D. Z. Arov, Darlington’s method in the study of dissipative systems, Dokl. Akad. Nauk SSSR 201 (1971), no. 3, 559–562 (Russian); Russian transl., Soviet Physics Dokl. 16 (1971), 954–956 (1972). MR 0428098
  • 2. D. Z. Arov, Realization of matrix-valued functions according to Darlington, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 1299–1331 (Russian). MR 0357820
  • 3. D. Z. Arov, Realization of a canonical system with a dissipative boundary condition at one end of the segment in terms of the coefficient of dynamical compliance, Sibirsk. Mat. Ž. 16 (1975), no. 3, 440–463, 643 (Russian). MR 0473196
  • 4. D. Z. Arov, Passive linear steady-state dynamical systems, Sibirsk. Mat. Zh. 20 (1979), no. 2, 211–228, 457 (Russian). MR 530486
  • 5. D. Z. Arov, Optimal and stable passive systems, Dokl. Akad. Nauk SSSR 247 (1979), no. 2, 265–268 (Russian). MR 545346
  • 6. D. Z. Arov, Stable dissipative linear stationary dynamical scattering systems, J. Operator Theory 2 (1979), no. 1, 95–126 (Russian). MR 553866
  • 7. D. Z. Arov, Functions of class Π, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 135 (1984), 5–30 (Russian, with English summary). Investigations on linear operators and the theory of functions, XIII. MR 741691
  • 8. D. Z. Arov and M. A. Nudel′man, Conditions for the similarity of all minimal passive realizations of a given transfer function (scattering and resistance matrices), Mat. Sb. 193 (2002), no. 6, 3–24 (Russian, with Russian summary); English transl., Sb. Math. 193 (2002), no. 5-6, 791–810. MR 1957950, 10.1070/SM2002v193n06ABEH000657
  • 9. N. I. Ahiezer and I. M. Glazman, Teoriya lineinykh operatorov v Gilbertovom prostranstve, Second revised and augmented edition, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0206710
    N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space. Vol. I, Monographs and Studies in Mathematics, vol. 9, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. Translated from the third Russian edition by E. R. Dawson; Translation edited by W. N. Everitt. MR 615736
    N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space. Vol. II, Monographs and Studies in Mathematics, vol. 10, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. Translated from the third Russian edition by E. R. Dawson; Translation edited by W. N. Everitt. MR 615737
  • 10. R. G. Douglas, H. S. Shapiro, and A. L. Shields, On cyclic vectors of the backward shift, Bull. Amer. Math. Soc. 73 (1967), 156–159. MR 0203465, 10.1090/S0002-9904-1967-11695-1
  • 11. Béla Sz.-Nagy and Ciprian Foiaș, Harmonic analysis of operators on Hilbert space, Translated from the French and revised, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. MR 0275190
  • 12. Marvin Rosenblum and James Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. Oxford Science Publications. MR 822228
  • 13. I. I. Privalov, Graničnye svoĭstva analitičeskih funkciĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). 2d ed.]. MR 0047765
  • 14. Yu. P. Ginzburg, On $ J$-nondilating operators in Hilbert space, Nauchn. Zap. Fiz.-Mat. Fak. Odessk. Gos. Ped. Inst. 22 (1958), no. 1, 13-20. (Russian )
  • 15. R. G. Douglas and J. William Helton, Inner dilations of analytic matrix functions and Darlington synthesis, Acta Sci. Math. (Szeged) 34 (1973), 61–67. MR 0322538
  • 16. Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840
  • 17. V. E. Katsnelson and B. Kirstein, On the theory of matrix-valued functions belonging to the Smirnov class, Topics in interpolation theory (Leipzig, 1994) Oper. Theory Adv. Appl., vol. 95, Birkhäuser, Basel, 1997, pp. 299–350. MR 1473261
  • 18. Anders Lindquist and Michele Pavon, On the structure of state-space models for discrete-time stochastic vector processes, IEEE Trans. Automat. Control 29 (1984), no. 5, 418–432. MR 748206, 10.1109/TAC.1984.1103549
  • 19. Anders Lindquist and Giorgio Picci, On a condition for minimality of Markovian splitting subspaces, Systems Control Lett. 1 (1981/82), no. 4, 264–269. MR 670210, 10.1016/S0167-6911(82)80010-8
  • 20. Anders Lindquist and Giorgio Picci, Realization theory for multivariate stationary Gaussian processes, SIAM J. Control Optim. 23 (1985), no. 6, 809–857. MR 809539, 10.1137/0323050

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 47A56

Retrieve articles in all journals with MSC (2000): 47A56


Additional Information

D. Z. Arov
Affiliation: Department of Physics and Mathematics, South-Ukrainian State Pedagogical University, Staroportofrankovskaya, 26, 650029, Odessa, Ukraine

N. A. Rozhenko
Affiliation: Department of Physics and Mathematics, South-Ukrainian State Pedagogical University, Staroportofrankovskaya, 26, 650029, Odessa, Ukraine

DOI: http://dx.doi.org/10.1090/S1061-0022-08-01002-9
Keywords: Holomorphic matrix-valued functions, dilations, pseudocontinuation
Received by editor(s): November 9, 2006
Published electronically: March 21, 2008
Article copyright: © Copyright 2008 American Mathematical Society