Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Optimization problems related to the John uniqueness theorem


Authors: V. V. Volchkov and Vit. V. Volchkov
Translated by: N. B. Lebedinskaya
Original publication: Algebra i Analiz, tom 21 (2009), nomer 5.
Journal: St. Petersburg Math. J. 21 (2010), 705-729
MSC (2010): Primary 44A35
DOI: https://doi.org/10.1090/S1061-0022-2010-01113-0
Published electronically: July 14, 2010
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The spectrum structure problem is considered for a distribution that is periodic in the mean and satisfies uniqueness conditions of John type. The solution of this problem is obtained for a wide class of distributions on arbitrary Riemannian two-point-homogeneous spaces.


References [Enhancements On Off] (What's this?)

  • 1. F. John, Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion, Math. Ann. 111 (1935), no. 1, 541–559 (German). MR 1513012, https://doi.org/10.1007/BF01472237
  • 2. Fritz John, Plane waves and spherical means applied to partial differential equations, Interscience Publishers, New York-London, 1955. MR 0075429
  • 3. V. V. Volchkov, Integral geometry and convolution equations, Kluwer Academic Publishers, Dordrecht, 2003. MR 2016409
  • 4. J. Denmead Smith, Harmonic analysis of scalar and vector fields in 𝑅ⁿ, Proc. Cambridge Philos. Soc. 72 (1972), 403–416. MR 0308675
  • 5. B. Ya. Levin, Distribution of zeros of entire functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956 (Russian). MR 0087740
  • 6. A. F. Leont'ev, Sequences of polynomials of exponentials, Nauka, Moscow, 1980. (Russian) MR 0577300 (81m:30002)
  • 7. Yu. I. Lyubich, On uniqueness theorem for periodic functions in means, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 81 (1978), p. 166; English transl. in J. Soviet Math. 26 (1984), no. 5.
  • 8. P. P. Kargaev, Zeros of functions periodic in the mean, Mat. Zametki 37 (1985), no. 3, 322-325; English transl., Math. Notes 37 (1985), no. 3-4, 181-183. MR 0790420 (87e:42015)
  • 9. P. Koosis, Introduction to $ H^p$ spaces. With an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., vol. 40, Cambridge Univ. Press, Cambridge-New York, 1980. MR 0565451 (81c:30062)
  • 10. Eric Todd Quinto, Pompeiu transforms on geodesic spheres in real analytic manifolds, Israel J. Math. 84 (1993), no. 3, 353–363. MR 1244674, https://doi.org/10.1007/BF02760947
  • 11. D. A. Zaraĭskiĭ, Sharpening a uniqueness theorem for solutions of a convolution equation, Proceedings of the Institute of Applied Mathematics and Mechanics. Vol. 12 (Russian), Tr. Inst. Prikl. Mat. Mekh., vol. 12, Nats. Akad. Nauk Ukrainy Inst. Prikl. Mat. Mekh., Donetsk, 2006, pp. 69–75 (Russian, with Russian summary). MR 2353750
  • 12. V. V. Volchkov, Uniqueness theorems for solutions of a convolution equation on symmetric spaces, Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006), no. 6, 3–18 (Russian, with Russian summary); English transl., Izv. Math. 70 (2006), no. 6, 1077–1092. MR 2285024, https://doi.org/10.1070/IM2006v070n06ABEH002339
  • 13. V. V. Volchkov, A local two-radii theorem on symmetric spaces, Mat. Sb. 198 (2007), no. 11, 21–46 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 11-12, 1553–1577. MR 2374383, https://doi.org/10.1070/SM2007v198n11ABEH003896
  • 14. Vit. V. Volchkov, Functions with zero spherical mean values on compact two-point-homogeneous spaces, Mat. Sb. 198 (2007), no. 4, 21–46 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 3-4, 465–490. MR 2352359, https://doi.org/10.1070/SM2007v198n04ABEH003845
  • 15. S. Helgason, Groups and geometric analysis, Pure Appl. Math., vol. 113, Acad. Press, Inc., Orlando, FL, 1984. MR 0754767 (86c:22017)
  • 16. Lars Hörmander, The analysis of linear partial differential operators. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990. Distribution theory and Fourier analysis. MR 1065993
  • 17. G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. MR 0385004
  • 18. Sigurdur Helgason, Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, vol. 39, American Mathematical Society, Providence, RI, 1994. MR 1280714
  • 19. È. Ya. Riekstyn′sh and È. Ja. Riekstyn′š, \cyr Asimptoticheskie razlozheniya integralov. Tom 1, Izdat. “Zinatne”, Riga, 1974 (Russian). MR 0374775
  • 20. V. V. Volchkov and Vit. V. Volchkov, Uniqueness theorems and description of solutions for convolution equations on symmetric spaces and for the twisted convolution equations on $ \mathbb{C}^n$, Donetsk. Nat. Univ., Donetsk, 2005. (English)
  • 21. Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
  • 22. Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
  • 23. R. E. Edwards, Fourier series. A modern introduction. Vol. 1, Grad. Texts in Math., vol. 64, Springer-Verlag, New York-Berlin, 1979. MR 0545506 (80j:42001)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 44A35

Retrieve articles in all journals with MSC (2010): 44A35


Additional Information

V. V. Volchkov
Affiliation: Donetsk National University, 3 Malyshko Street, Donetsk 83053, Ukraine
Email: valeriyvolchkov@gmail.com

Vit. V. Volchkov
Affiliation: Donetsk National University, 3 Malyshko Street, Donetsk 83053, Ukraine
Email: volchkov@univ.donetsk.ua

DOI: https://doi.org/10.1090/S1061-0022-2010-01113-0
Keywords: Two-point-homogeneous spaces, spherical harmonics, periodicity in the mean, John uniqueness theorem
Received by editor(s): June 16, 2008
Published electronically: July 14, 2010
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society