Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Examples of Hamiltonian structures in the theory of integrable models, and their quantization


Author: L. D. Faddeev
Translated by: M. A. Semenov-Tyan-Shanskiĭ
Original publication: Algebra i Analiz, tom 25 (2013), nomer 2.
Journal: St. Petersburg Math. J. 25 (2014), 295-302
MSC (2010): Primary 81S05, 81S10, 81S20; Secondary 37K10
DOI: https://doi.org/10.1090/S1061-0022-2014-01291-5
Published electronically: March 12, 2014
MathSciNet review: 3114855
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A brief survey of certain important examples mentioned in the title and certain quantization methods.


References [Enhancements On Off] (What's this?)

  • 1. V. S. Buslaev, The generating integral and the Maslov canonical operator in the WKB method, Functional. Anal. i Priložen. 3 (1969), no. 3, 17-31. (Russian) MR 0467854 (57:7705)
  • 2. L. D. Faddeev and A. Yu. Volkov, Abelian current algebra and the Virasoro algebra on the lattice, Phys. Lett. B 315 (1993), no. 3-4, 311-318. MR 1238474 (94i:81046)
  • 3. F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), no. 5, 1156-1162. MR 488516 (80a:35112)
  • 4. J.-L. Gervais, Transport matrices associated with the Virasoro algebra, Phys. Lett. B 160 (1985), no. 4-5, 279-282. MR 807873 (87h:58084b)
  • 5. L. D. Faddeev and L. A. Takhtajan, Liouville model on the lattice, Field theory, quantum gravity and strings. (Meudon/Paris VI, France 1984/85), 166-179, Lecture Notes in Phys., vol. 246, Springer, Berlin, 1986. MR 848618 (87h:81213)
  • 6. E. K. Sklyanin, The Goryachev-Chaplygin top and the method of the inverse scattering problem. Differential geometry, Lie groups and mechanics, VI, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 133 (1984), 236-257; English. transl., J. Soviet Math. 31 (1985), no. 6, 3417-3432. MR 742161 (98d:81034)
  • 7. M. P. Schützenberger, Une interprétation de certaines solution de l'equation functionelle, C. R. Acad. Sci. Paris 236 (1953), 352-353. MR 0053402 (14:768g)
  • 8. L. D. Faddeev and R. Kashaev, Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), no. 5, 427-434, [hep-th/9310070]. MR 1264393 (95i:11150)
  • 9. A. Yu. Volkov, Beyond the ``Pentagon Identity'', Lett. Math. Phys. 39 (1997), no. 4, 393-397. MR 1449584 (98d:81034)
  • 10. L. D. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34, (1995), no. 3, 249-254, [hep-th/9504111]. MR 1345554 (96i:46075)
  • 11. -, Modular double of quantum group, Preprint math. QA/9912078.

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 81S05, 81S10, 81S20, 37K10

Retrieve articles in all journals with MSC (2010): 81S05, 81S10, 81S20, 37K10


Additional Information

L. D. Faddeev
Affiliation: St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27, St. Petersburg 191023, Russia
Email: faddeev@pdmi.ras.ru

DOI: https://doi.org/10.1090/S1061-0022-2014-01291-5
Keywords: Hamiltonian structure, quantization, Poisson bracket, Abelian current, Liouville model, Magri bracket, discretization, modular double
Received by editor(s): January 20, 2013
Published electronically: March 12, 2014
Additional Notes: Partially supported by RFBR (grants nos. 11-01-00570 and 11-01-12037) and by the RAS program “Mathematical problems of nonlinear dynamics”
Dedicated: To the memory of Vladimir Buslaev
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society