Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

Remarks on Hilbert identities, isometric embeddings, and invariant cubature


Authors: H. Nozaki and M. Sawa
Original publication: Algebra i Analiz, tom 25 (2013), nomer 4.
Journal: St. Petersburg Math. J. 25 (2014), 615-646
MSC (2010): Primary 65D32, 11E76; Secondary 52A21
DOI: https://doi.org/10.1090/S1061-0022-2014-01310-6
Published electronically: June 5, 2014
MathSciNet review: 3184620
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 2004, Victoir developed a method to construct cubature formulas with various combinatorial objects. Motivated by this, the authors generalize Victoir's method with yet another combinatorial object, called the regular $ t$-wise balanced design. Many cubature formulas of small indices with few points are provided, which are used to update Shatalov's table (2001) of isometric embeddings in small-dimensional Banach spaces, as well as to improve some classical Hilbert identities. A famous theorem of Bajnok (2007) on Euclidean designs invariant under the Weyl group of Lie type $ B$ is extended to all finite irreducible reflection groups. A short proof of the Bajnok theorem is presented in terms of Hilbert identities.


References [Enhancements On Off] (What's this?)

  • 1. B. Bajnok, Orbits of the hyperoctahedral group as Euclidean designs, J. Algebraic. Comb. 25 (2007), no. 4, 375-397. MR 2320369 (2008a:05042)
  • 2. Ei. Bannai and Etsu. Bannai, Tight Gaussian $ 4$-designs, J. Algebraic. Comb. 22 (2005), no. 1, 39-63. MR 2163709 (2006d:05039)
  • 3. Ei. Bannai and R. M. Damerell, Tight spherical designs. II, J. London Math. Soc.(2) 21 (1980), no. 1, 13-30. MR 576179 (81g:05024)
  • 4. N. Bourbaki, Lie groups and Lie algebras: Chapters 4-6, Springer-Verlag, Berlin, 2002. MR 1890629 (2003a:17001)
  • 5. P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6 (1977), no. 3, 363-388. MR 0485471 (58:5302)
  • 6. L. E. Dickson, History of the theory of numbers. II, Carnegie Inst. of Washington, 1923.
  • 7. W. J. Ellison, Waring's problem, Amer. Math. Monthly 78 (1971), no. 1, 10-35. MR 0414510 (54:2611)
  • 8. R. Fuji-Hara, S. Kuriki, and M. Jimbo, On balanced complementation for regular $ t$-wise balanced designs, Discrete Math. 76 (1989), no. 1, 29-35. MR 1002235 (90d:05058)
  • 9. J. M. Goethals and J. J. Seidel, Cubature formulae, polytopes, and spherical designs, The Geometric Vein, Springer, New York-Berlin, 1981, 203-218. MR 661779 (83k:05033)
  • 10. S. C. Gupta and B. Jones, Equireplicate balanced block designs and unequal block sizes, Biometrika 70 (1983), no. 2, 433-440. MR 712030 (85a:62118)
  • 11. R. H. Hardin and N. J. A. Sloane, Expressing $ (a^2+b^2+c^2+d^2)^3$ as a sum of $ 23$ sixth powers, J. Combin. Theory Ser. A 68 (1994), no. 2, 481-485. MR 1297185 (96e:11048)
  • 12. -, McLaren's improved snub cube and other new spherical designs in three dimensions, Discrete Comput. Geom. 15 (1996), no. 4, 429-441. MR 1384885 (97b:52013)
  • 13. P. de la Harpe, C. Pache, and B. Venkov, Construction of spherical cubature formulas using lattices, Algebra i Analiz 18 (2006), no. 1, 162-186; English. transl., St. Petersburg Math. S. 18 (2007), no. 1, 119-139. MR 2225217 (2006m:65055)
  • 14. P. de la Harpe and C. Pache, Cubature formulas, geometrical designs, reproducing kernels, and Markov operators, Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, Progr. Math., vol. 248, Birkhauser, Basel, 2005. pp. 219-267. MR 2195455 (2007i:05037)
  • 15. A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal arrays. Theory and applications, Springer Ser. Statist., Springer-Verlag, New York, 1999. MR 1693498 (2000h:05042)
  • 16. D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $ n$-ter Potenzen (Waringsches problem), Math. Ann. 67 (1909), no. 3, 281-300. MR 1511530
  • 17. Y. J. Ionin and T. Trung, Symmetric designs, In: C. J. Colbourn, J. H. Dinitz (eds.), Handbook of Combinatorial Designs, 2nd ed., CRC Press, Boca Raton, USA, 2007, pp. 110-124.
  • 18. S. Kageyama and D. Majumdar, Resistant BTIB designs, Comm. Statist. Theory Methods 19 (1990), no. 6, 2145-2158. MR 1086224 (92e:62144)
  • 19. G. B. Khosrovshahi and R. Laue, $ t$-Designs with $ t \ge 3$, In: C. J. Colbourn, J. H. Dinitz (eds.), Handbook of Combinatorial Designs, 2nd ed., CRC Press, Boca Raton, USA, 2007, pp. 79-101.
  • 20. H. König, Isometric imbeddings of Euclidean spaces into finite-dimensional $ l_p$-spaces, Panoramas of Mathematics (Warsaw, 1992/1994), Banach Center Publ., vol. 34, Polish Acad. Sci., Warsaw, 1995, pp. 79-87. MR 1374341 (97f:46018)
  • 21. T. Lyons and N. Victoir, Cubature on Wiener space. Stochastic analysis with applications to mathematical finance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), no. 2041, 169-198. MR 2052260 (2005b:35306)
  • 22. Y. I. Lyubich and L. N. Vaserstein, Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata 47 (1993), no. 3, 327-362. MR 1235223 (94j:46017)
  • 23. A. Neumaier and J. J. Seidel, Discrete measures for spherical designs, eutactic stars and lattices, Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 3, 321-334. MR 964837 (89i:05072)
  • 24. H. Nozaki and M. Sawa, Note on cubature formulae and designs obtained from group orbits, Canad. J. Math. 64 (2012), no. 6, 1359-1377. MR 2994669
  • 25. B. Reznick, On the length of binary forms, In: K. Alladi, M. Bhargava, D. Saritt, and P. Tiep (eds.), Developments in Math., Springer, New York, (http://arxiv.org/pdf/1007.5485.pdf).
  • 26. -, Some constructions of spherical $ 5$-designs, Linear Algebra Appl. 226/228 (1995), 163-196. MR 1344561 (96f:05048)
  • 27. -, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 96 (1992), no. 463, 155. MR 1096187 (93h:11043)
  • 28. G. N. Salihov, Cubature formulas for a hyperspere that are invariant with respect to the regular $ 600$-face, Dokl. Akad. Nauk SSSR 223 (1975), no. 5, 1075-1078; English transl., Soviet Math. Dokl. 16 (1975), 1046-1050. MR 0408213 (53:11978)
  • 29. M. Sawa and Y. Xu, On positive cubature rules on the simplex and isometric embeddings, Math. Comp. (to appear); arXiv:1108.3385v1. MR 3167458
  • 30. J. Schmid, On totally positive units of real holomorphy rings, Israel J. Math. 85 (1994), no. 1-3, 339-350. MR 1264350 (94m:12003)
  • 31. J. J. Seidel, Isometric embeddings and geometric designs, Discrete Math. 136 (1994), no. 1-3, 281-293. MR 1313290 (96f:51022)
  • 32. O. Shatalov, Isometric embeddings $ l_2^m \longrightarrow l_p^n$ and cubature formulas over classical fields, Doctor Thesis, Technion-Israel Inst. Technology, Haifa, Israel, 2001.
  • 33. S. L. Sobolev, Cubature formulas on the sphere which are invariant under transformations of finite notation groups, Dokl. Akad. Nauk SSSR 146 (1962), no. 2, 310-313. (Russian) MR 0141225 (25:4635)
  • 34. A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Englewood Cliffs, NJ, 1971. MR 0327006 (48:5348)
  • 35. N. Victoir, Asymmetric cubature formulae with few points in high dimension for symmetric measures, SIAM J. Numer. Anal. 42 (2004), no. 1, 209-227. (electronic) MR 2051063 (2005g:65044)
  • 36. W. G. Woodal, Square $ \lambda $-linked designs, Proc. London Math. Soc. 20 (1970), 669-687. MR 0263663 (41:8264)
  • 37. Z. Xiang, A Fisher type inequality for weighted regular $ t$-wise balanced designs, J. Combin. Theory Ser. A 119 (2012), no. 7, 1523-1527. MR 2925940
  • 38. Y. Xu, Minimal cubature formulae for a family of radial weight functions, Adv. Comput. Math. 8 (1998), no. 4, 367-380. MR 1637626 (99d:41049)
  • 39. -, Orthogonal polynomials and cubature formulae on spheres and on simplices, Methods Appl. Anal. 5 (1998), no. 2, 169-184. MR 1636558 (2000f:33009)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 65D32, 11E76, 52A21

Retrieve articles in all journals with MSC (2010): 65D32, 11E76, 52A21


Additional Information

H. Nozaki
Affiliation: Department of Mathematics, Aichi University of Education, Igaya-cho, Kariya-city 448-8542, Japan
Email: hnozaki@auecc.aichi-edu.ac.jp

M. Sawa
Affiliation: Graduate School of Information Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601. Japan
Email: sawa@is.nagoya-u.ac.jp

DOI: https://doi.org/10.1090/S1061-0022-2014-01310-6
Keywords: Cubature formula, Hilbert identity, isometric embedding, Victoir method
Received by editor(s): April 5, 2012
Published electronically: June 5, 2014
Additional Notes: The second author was supported in part by Grant-in-Aid for Young Scientists (B) 22740062 and Grant-in-Aid for Challenging Exploratory Research 23654031 by the Japan Society for the Promotion of Science
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society