Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Abelian and Tauberian theorems for random fields on two-point homogeneous spaces


Author: A. A. Malyarenko
Translated by: The author
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 69 (2003).
Journal: Theor. Probability and Math. Statist. 69 (2004), 115-127
MSC (2000): Primary 60G60, 60G10; Secondary 40E05
DOI: https://doi.org/10.1090/S0094-9000-05-00619-8
Published electronically: February 8, 2005
MathSciNet review: 2110910
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider centered mean-square continuous random fields for which the variance of increments between two points depends only on the distance between these points. Relations between the asymptotic behavior of the variance of increments near zero and the asymptotic behavior of the spectral measure of the field near infinity are investigated. We prove several Abelian and Tauberian theorems in terms of slowly varying functions.


References [Enhancements On Off] (What's this?)

  • 1. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. II, McGraw-Hill, New York, 1953. MR 0058756 (15:419i)
  • 2. V. V. Buldygin and Yu. V. Kozachenko, Metric Characterization of Random Variables and Random Processes, TViMS, Kiev, 1998; English transl., Translations of Mathematical Monographs, vol. 188, Amer. Math. Soc., Providence, RI, 2000. MR 1743716 (2001g:60089)
  • 3. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, ``Nauka'', Moscow, 1991; English transl., Translations of Mathematical Monographs, vol. 22, Amer. Math. Soc., Providence, RI, 1968. MR 1177172 (93d:33013)
  • 4. J. A. Wolf, Spaces of Constant Curvature, Publish or Perish, Wilmington, DE, 1984. MR 0928600 (88k:53002)
  • 5. N. N. Leonenko and A. Ya. Olenko, Tauberian and Abelian theorems for the correlation function of a homogeneous isotropic random field, Ukrain. Mat. Zh. 43 (1991), no. 12, 1652-1664; English transl. in Ukrainian Math. J. 43 (1991), 1539-1548. MR 1172306 (93f:60069)
  • 6. A. A. Malyarenko, Local properties of Gaussian random fields on compact symmetric spaces, and Jackson-type and Bernstein-type theorems, Ukrain. Mat. Zh. 51 (1999), no. 1, 60-68; English transl. in Ukrainian Math. J. 43 (1991), 66-75. MR 1712757 (2000j:60053)
  • 7. G. M. Molchan, Homogeneous random fields on symmetric spaces of rank one, Teor. Veroyatnost. Matem. Statist. (1979), no. 21, 123-148; English transl. in Theory Probab. Math. Statist. 21 (1980), 143-168. MR 0550252 (81f:60077)
  • 8. A. Ya. Olenko, Tauberian and Abelian theorems for random fields with strong dependence, Ukrain. Mat. Zh. 48 (1996), no. 3, 368-382; English transl. in Ukrainian Math. J. 48 (1996), 412-427. MR 1408658 (97k:60143)
  • 9. G. Szego, Orthogonal Polynomials, Colloquium Publications, vol. XXIII, Amer. Math. Soc., Providence, RI, 1975. MR 0372517 (51:8724)
  • 10. A. M. Yaglom, Certain types of random fields in $n$-dimensional space similar to stationary stochastic processes, Teor. Veroyatnost. i Primenen. 2 (1957), 292-338; English transl. in Theory Probab. Appl. MR 0094844 (20:1353)
  • 11. M. I. Yadrenko, Spectral Theory of Random Fields, ``Vyshcha Shkola'', Kiev, 1980; English transl., Translation Series in Mathematics and Engineering, Optimization Software, Inc., Publications Division, New York, 1983. MR 0590889 (82e:60001)
  • 12. R. J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Institute of Mathematical Statistics Lecture Notes--Monograph Series, vol. 12, Institute of Mathematical Statistics, Hayward, CA, 1990. MR 1088478 (92g:60053)
  • 13. R. Askey and N. H. Bingham, Gaussian processes on compact symmetric spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 37 (1976), no. 2, 127-143. MR 0423000 (54:10984)
  • 14. N. H. Bingham, Tauberian theorems for Jacobi series, Proc. London Math. Soc. (3) 36 (1978), no. 2, 285-309. MR 0620813 (58:29795)
  • 15. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR 0898871 (88i:26004)
  • 16. M. Flensted-Jensen and T. H. Koornwinder, Positive definite spherical functions on a noncompact, rank one symmetric space, Analyse Harmonique sur les Groupes de Lie II, Lect. Notes Math., vol. 739, Springer-Verlag, Berlin-Heidelberg-New York, 1979, pp. 249-282. MR 0560841 (81j:43015)
  • 17. R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. H. Poincaré, Sect. B 3 (1967), 121-226. MR 0215331 (35:6172)
  • 18. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, vol. 34, Amer. Math. Soc., Providence, RI, 2001. MR 1834454 (2002b:53081)
  • 19. N. N. Leonenko and A. Ya. Olenko, Tauberian theorems for correlation functions and limit theorems for spherical averages of random fields, Random Oper. Stochastic Equations 1 (1993), no. 1, 57-67. MR 1254176 (95a:60068)
  • 20. E. J. G. Pitman, On the behavior of the characteristic function of a probability distribution in the neighborhood of the origin, J. Austral. Math. Soc. 8 (1968), 423-443. MR 0231423 (37:6978)
  • 21. A. M. Yaglom, Second order homogeneous random fields, Proc. IV Berkeley Symp. Math. Stat. Probab., vol. 2, 1961, pp. 593-622. MR 0146880 (26:4399)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60G60, 60G10, 40E05

Retrieve articles in all journals with MSC (2000): 60G60, 60G10, 40E05


Additional Information

A. A. Malyarenko
Affiliation: International Mathematical Centre, National Academy of Sciences of Ukraine
Address at time of publication: Mälardalen University, P. O. Box 883, SE–721 23 Västerås, Sweden
Email: anatoliy.malyarenko@mdh.se

DOI: https://doi.org/10.1090/S0094-9000-05-00619-8
Keywords: Random field, Abelian theorem, Tauberian theorem, two-point homogeneous space
Received by editor(s): January 3, 2003
Published electronically: February 8, 2005
Additional Notes: This work is supported in part by the Foundation for Knowledge and Competence Development.
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society