Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The asymptotic behavior of solutions of systems of Volterra integral equations


Author: Alfred Horn
Journal: Trans. Amer. Math. Soc. 63 (1948), 144-174
MSC: Primary 45.0X
DOI: https://doi.org/10.1090/S0002-9947-1948-0024035-X
MathSciNet review: 0024035
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. D. Birkhoff and R. E. Langer, The boundary problems and developments associated with a system of ordinary linear differential equations of the first order, Proceedings of the American Academy of Arts and Sciences vol. 58 (1923) pp. 51-128.
  • [2] G. Kowalewski, Integralgleichungen, Berlin, 1930.
  • [3] R. E. Langer, The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to the Stokes phenomenon, Bull. Amer. Math. Soc. vol. 40 (1934) pp. 545-582. MR 1562910
  • [4] J. Peres, Sur les transformations qui conservent la composition, Bull. Soc. Math. France vol. 47 (1919) pp. 16-37. MR 1504780
  • [5] W. J. Trjitzinsky, Theory of linear differential equations containing a parameter, Acta Math. vol. 67 (1936) pp. 1-50. MR 1555415
  • [6] V. Volterra, Teoría delle potenze, dei logaritmi e delle funzione di composizione, Mémoire della Reale Accademia dei Lincei (5) vol. 11 (1915) pp. 167-249.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 45.0X

Retrieve articles in all journals with MSC: 45.0X


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1948-0024035-X
Article copyright: © Copyright 1948 American Mathematical Society

American Mathematical Society