Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Functions satsifying the mean value property


Authors: Avner Friedman and Walter Littman
Journal: Trans. Amer. Math. Soc. 102 (1962), 167-180
MSC: Primary 31.11
DOI: https://doi.org/10.1090/S0002-9947-1962-0151628-9
MathSciNet review: 0151628
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] N. Aronszajn, On coercive integro-differential quadratic forms, Studies in Eigenvalue Problems, Technical Report 14, 1955, pp. 94-106.
  • [2] E. F. Beckenbach and M. Reade, Mean-values and harmonic polynomials, Trans. Amer. Math. Soc. 53 (1943), 230-238. MR 0007831 (4:199c)
  • [3] -, Regular solids and harmonic polynomials, Duke Math. J. 12 (1945), 629-644. MR 0014562 (7:302d)
  • [4] W. Brödel, Funktionen mit Gaussicher Mittelwerteigenschaft für konvexe Kurven und Bereiche, Deutsche Math. 4 (1939), 3-15.
  • [5] G. Choquet and J. Deny, Sur quelques propriétés de moyenne caractéristiques des fonctions harmoniques et polyharmoniques, Bull. Soc. Math. France 72 (1944), 118-140. MR 0013496 (7:161d)
  • [6] L. Flatto, Functions with a mean value property, J. Math. Mech. 10 (1961), 11-18. MR 0136751 (25:212)
  • [7] A. Friedman, Mean-values and polyharmonic polynomials, Michigan Math. J. 4 (1957), 67-74. MR 0084045 (18:799b)
  • [8] A. Friedman and W. Littman, Bodies for which harmonic functions satisfy the mean value property, Trans. Amer. Math. Soc. 102 (1962), 147-166. MR 0151627 (27:1611)
  • [9] B. L. van der Waerden, Moderne Algebra, Vol. 2, Ungar, New York, 1950.
  • [10] J. L. Walsh, A mean value theorem for polynomials and harmonic polynomials, Bull. Amer. Math. Soc. 42 (1936), 923-930. MR 1563465

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31.11

Retrieve articles in all journals with MSC: 31.11


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1962-0151628-9
Article copyright: © Copyright 1962 American Mathematical Society

American Mathematical Society