Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The module index and invertible ideals


Author: David W. Ballew
Journal: Trans. Amer. Math. Soc. 148 (1970), 171-184
MSC: Primary 16.20
DOI: https://doi.org/10.1090/S0002-9947-1970-0255589-8
MathSciNet review: 0255589
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A. Fröhlich used the module index to classify the projective modules of an order in a finite dimensional commutative separable algebra over the quotient field of a Dedekind domain. This paper extends Fröhlich's results and classifies the invertible ideals of an order in a noncommutatives eparable algebra. Several properties of invertible ideals are considered, and examples are given.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 22 #8034. MR 0117252 (22:8034)
  • [2] D. Ballew, The module index, projective modules and invertible ideals, Ph.D. Thesis, University of Illinois, Urbana, 1969.
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [4] C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519. MR 0144979 (26:2519)
  • [5] A. Fröhlich, Invariants for modules over commutative separable orders, Quart. J. Math. Oxford Ser. (2) 16 (1965), 193-232. MR 35 #1583. MR 0210697 (35:1583)
  • [6] R. Gordon, Rings faithfully represented on their left socle, J. Algebra 7 (1967), 303-342. MR 36 #1483. MR 0218396 (36:1483)
  • [7] N. Jacobson, Structure of rings, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1964. MR 36 #5158. MR 0222106 (36:5158)
  • [8] J. Murtha, Hereditary orders over principal ideal domains, Ph.D. thesis, University of Wisconsin, Madison, 1964.
  • [9] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16.20

Retrieve articles in all journals with MSC: 16.20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1970-0255589-8
Keywords: Orders, module index, invertible ideals, equivalent idempotents, separable algebra, reduced orders
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society