Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On $ L\sp{p}$ estimates for integral transforms


Author: T. Walsh
Journal: Trans. Amer. Math. Soc. 155 (1971), 195-215
MSC: Primary 47.70; Secondary 44.00
DOI: https://doi.org/10.1090/S0002-9947-1971-0284880-5
MathSciNet review: 0284880
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper R. S. Strichartz has extended and simplified the proofs of a few well-known results about integral operators with positive kernels and singular integral operators. The present paper extends some of his results. An inequality of Kantorovič for integral operators with positive kernel is extended to kernels satisfying two mixed weak $ {L^p}$ estimates. The ``method of rotation'' of Calderón and Zygmund is applied to singular integral operators with Banach space valued kernels. Another short proof of the fractional integration theorem in weighted norms is given. It is proved that certain sufficient conditions on the exponents of the $ {L^p}$ spaces and weight functions involved are necessary. It is shown that the integrability conditions on the kernel required for boundedness of singular integral operators in weighted $ {L^p}$ spaces can be weakened. Some implications for integral operators in $ {R^n}$ of Young's inequality for convolutions on the multiplicative group of positive real numbers are considered. Throughout special attention is given to restricted weak type estimates at the endpoints of the permissible intervals for the exponents.


References [Enhancements On Off] (What's this?)

  • [1] A. Benedek, A. P. Calderón and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365. MR 24 #A3479. MR 0133653 (24:A3479)
  • [2] A. Benedek and R. Panzone, The spaces $ {L^p}$, with mixed norm, Duke Math. J. 28 (1961), 301-324. MR 23 #A3451. MR 0126155 (23:A3451)
  • [3] C. A. Berenstein, M. Cotlar, N. Kerzman and P. Krée, Some remarks on the Marcinkiewicz convexity theorem in the upper triangle, Studia Math. 29 (1967), 79-95. MR 37 #6780. MR 0231225 (37:6780)
  • [4] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., vol. 4, Amer. Math. Soc., Providence, R. I., 1960, pp. 33-49. MR 26 #603. MR 0143037 (26:603)
  • [5] -, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. MR 29 #5097. MR 0167830 (29:5097)
  • [6] -, Spaces between $ {L^1}$ and $ {L^\infty }$ and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299. MR 34 #3295. MR 0203444 (34:3295)
  • [7] -, Algebras of singular integral operators, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R. I., 1966, pp. 18-55. MR 0394309 (52:15112)
  • [8] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309. MR 18, 894. MR 0084633 (18:894a)
  • [9] -, A note on the interpolation of sublinear operations, Amer. J. Math. 78 (1956), 282-288. MR 18, 586. MR 0082647 (18:586d)
  • [10] R. R. Coifman, Remarks on weak type inequalities for operators commuting with transations, Bull. Amer. Math. Soc. 74 (1968), 710-714. MR 37 #6687. MR 0231132 (37:6687)
  • [11] E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38. MR 35 #683. MR 0213744 (35:4601)
  • [12] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 22 #12389. MR 0121655 (22:12389)
  • [13] R. A. Hunt, On $ L(p,q)$ spaces, Enseignement Math. (2) 12 (1966), 249-276. MR 36 #6921. MR 0223874 (36:6921)
  • [14] L. V. Kantorovič, Integral operators, Uspehi Mat. Nauk 11 (1956), no. 2 (68), 3-29. (Russian) MR 20 #5432. MR 0098987 (20:5432)
  • [15] M. A. Krasnosel'skiĭ, et al., Integral operators in spaces of summable functions, ``Nauka", Moscow, 1966. (Russian) MR 34 #6568. MR 0206751 (34:6568)
  • [16] P. Krée, Une inégalité sur les transformations intégrales, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A222-A225. MR 35 #5980. MR 0215137 (35:5980)
  • [17] B. Muckenhoupt. On certain singular integrals, Pacific J. Math. 10 (1960), 239-261. MR 22 #3948. MR 0113108 (22:3948)
  • [18] G. O. Okikiolu, Bounded linear transformations in $ {L^p}$ space, J. London Math. Soc. 41 (1966), 407-414. MR 33 #7801. MR 0199658 (33:7801)
  • [19] R. O. O'Neil, Integral transforms, J. Analyse Math. 21 (1968), 1-276. MR 0626853 (58:30125)
  • [20] N. M. Rivière, On singular integrals, Bull. Amer. Math. Soc. 75 (1969), 843-847. MR 39 #4711. MR 0243389 (39:4711)
  • [21] C. Sadosky, A note on parabolic fractional and singular integrals, Studia Math. 26 (1966), 295-302. MR 0221340 (36:4392)
  • [22] E. M. Stein, Note on singular integrals, Proc. Amer. Math. Soc. 8 (1957), 250-254. MR 19, 547. MR 0088606 (19:547b)
  • [23] E. M. Stein and G. Weiss, Fractional integrals on $ n$-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503-514. MR 20 #4746. MR 0098285 (20:4746)
  • [24] R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060. MR 35 #5927. MR 0215084 (35:5927)
  • [25] R. S. Strichartz, $ {L^p}$ estimates for integral transforms, Trans. Amer. Math. Soc. 136 (1969), 33-50. MR 38 #2638. MR 0234321 (38:2638)
  • [26] F. Treves, Topological vector spaces, distributions, and kernels, Academic Press, New York, 1967. MR 37 #726. MR 0225131 (37:726)
  • [27] A. Zygmund, Trigonometric series. Vol. II, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.70, 44.00

Retrieve articles in all journals with MSC: 47.70, 44.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1971-0284880-5
Keywords: $ {L^p}$ estimates, integral transforms, inequality of Kantorovič, complex interpolation, Lorentz spaces, singular integrals, fractional integration, weighted $ {L^p}$ spaces, Schur's inequality
Article copyright: © Copyright 1971 American Mathematical Society

American Mathematical Society