Existence theorems for infinite particle systems

Author:
Thomas M. Liggett

Journal:
Trans. Amer. Math. Soc. **165** (1972), 471-481

MSC:
Primary 60K35

MathSciNet review:
0309218

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sufficient conditions are given for a countable sum of bounded generators of semigroups of contractions on a Banach space to be a generator. This result is then applied to obtain existence theorems for two classes of models of infinite particle systems. The first is a model of a dynamic lattice gas, while the second describes a lattice spin system.

**[1]**R. M. Blumenthal and R. K. Getoor,*Markov processes and potential theory*, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR**0264757****[2]**R. L. Dobrushin, I. I. Pjatetskii-Shapiro and N. B. Vasilev,*Markov processes in an infinite product of discrete spaces*, Soviet-Japanese Symposium in Probability Theory, Khabarovsk, U.S.S.R., 1969.**[3]**T. E. Harris,*Nearest-neighbor Markov interaction processes on multidimensional lattices*, Advances in Math.**9**(1972), 66–89. MR**0307392****[4]**Richard Holley,*A class of interactions in an infinite particle system*, Advances in Math.**5**(1970), 291–309 (1970). MR**0268960****[5]**-,*Free energy in a Markovian model of a lattice spin system*(to appear).**[6]**Thomas G. Kurtz,*Extensions of Trotter’s operator semigroup approximation theorems*, J. Functional Analysis**3**(1969), 354–375. MR**0242016****[7]**G. Lumer and R. S. Phillips,*Dissipative operators in a Banach space*, Pacific J. Math.**11**(1961), 679–698. MR**0132403****[8]**Frank Spitzer,*Interaction of Markov processes*, Advances in Math.**5**(1970), 246–290 (1970). MR**0268959**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60K35

Retrieve articles in all journals with MSC: 60K35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1972-0309218-7

Keywords:
Infinite particle systems,
linear semigroups of contractions,
statistical mechanics

Article copyright:
© Copyright 1972
American Mathematical Society