Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Solvable fundamental groups of compact $ 3$-manifolds


Authors: Benny Evans and Louise Moser
Journal: Trans. Amer. Math. Soc. 168 (1972), 189-210
MSC: Primary 57A65; Secondary 20E40
DOI: https://doi.org/10.1090/S0002-9947-1972-0301742-6
MathSciNet review: 0301742
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A classification is given for groups which can occur as the fundamental group of some compact $ 3$-manifold. In most cases we are able to determine the topological structure of a compact $ 3$-manifold whose fundamental group is known to be solvable. Using the results obtained for solvable groups, we are able to extend some known results concerning nilpotent groups of closed $ 3$-manifolds to the more general class of compact $ 3$-manifolds. In the final section it is shown that each nonfinitely generated abelian group which occurs as a subgroup of the fundamental group of a $ 3$-manifold is a subgroup of the additive group of rationals.


References [Enhancements On Off] (What's this?)

  • [1] D. B. A. Epstein, Projective planes in $ 3$-manifolds, Proc. London Math. Soc. (3) 11 (1961) 469-484. MR 27 #2968. MR 0152997 (27:2968)
  • [2] R. J. Gregorac, On residually finite generalized free products, Proc. Amer. Math. Soc. 24 (1970), 553-555. MR 41 #5498. MR 0260878 (41:5498)
  • [3] M. Hall, Jr., The theory of groups, Macmillan, New York, 1959. MR 21 #1996. MR 0103215 (21:1996)
  • [4] W. Heil, On $ {P^2}$-irreducible $ 3$-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775. MR 40 #4958. MR 0251731 (40:4958)
  • [5] W. Jaco, Finitely presented subgroups of three-manifold groups, Invent. Math. 13 (1971), 335-346. MR 0300279 (45:9325)
  • [6] I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, Mich., 1954. MR 16, 444. MR 0065561 (16:444g)
  • [7] H. Kneser, Geschlossen Flachen in dreidimensionalem Mannigfaltigheiten, Jber. Deutsch. Math.-Verein. 38 (1929), 248-260.
  • [8] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. Theorem 7.1, p. 343. MR 28 #122.
  • [9] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617. MR 0207802 (34:7617)
  • [10] W. Massey, Algebraic topology: An introduction, Harcourt, Brace and World, New York, 1967, Chap. 4. MR 35 #2271. MR 0211390 (35:2271)
  • [11] J. W. Milnor, Groups which act on $ {S^n}$ without fixed points, Amer. J. Math. 79 (1957), 623-630. MR 19, 761. MR 0090056 (19:761d)
  • [12] J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweisentigen Flachen, Acta. Math. 50 (1927), Satz 11, 266. MR 1555256
  • [13] H. Seifert, Topologie dreidimensionalen gefaster Raume, Acta. Math. 60 (1933), 147-238. MR 1555366
  • [14] J. Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12-19. MR 22 #12526. MR 0121796 (22:12526)
  • [15] -, On fibering certain $ 3$-manifolds, Topology of $ 3$-Manifolds and Related Topics (Proc. The Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95-100. MR 28 #1600.
  • [16] C. Thomas, Nilpotent groups and compact $ 3$-manifolds, Proc. Cambridge Philos. Soc. 64 (1968), 303-306. MR 38 #1681. MR 0233359 (38:1681)
  • [17] F. Waldhausen, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 36 #7146. MR 0224099 (36:7146)
  • [18] -, Gruppen mit Zentrum und $ 3$-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517. MR 38 #5223. MR 0236930 (38:5223)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57A65, 20E40

Retrieve articles in all journals with MSC: 57A65, 20E40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0301742-6
Keywords: Solvable group, nilpotent group, sufficiently large $ 3$-manifold, incompressible surface, Seifert fiber space, generalized free product, irreducible $ 3$-manifold, nonfinitely generated abelian group
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society