Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the evaluation of Brewer's character sums


Authors: Reinaldo E. Giudici, Joseph B. Muskat and Stanley F. Robinson
Journal: Trans. Amer. Math. Soc. 171 (1972), 317-347
MSC: Primary 10C20; Secondary 10G05
DOI: https://doi.org/10.1090/S0002-9947-1972-0306122-5
MathSciNet review: 0306122
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A decade ago in this journal B. W. Brewer defined a sequence of polynomials $ {V_n}(x,1)$ and for $ n = 4$ and 5 evaluated

$\displaystyle \sum\limits_{x = 1}^p {{}_\chi ({V_n}(x,1))}, $

$ \chi$ the nonprincipal quadratic character of the prime $ p$, in closed form. A. L Whiteman derived these results by means of cyclotomy.

Brewer subsequently defined $ {V_n}(x,Q)$. This paper applies cyclotomy to the more general polynomials and provides evaluations for several more values of $ n$. Relevant quadratic decompositions of primes are studied.


References [Enhancements On Off] (What's this?)

  • [1] B. W. Brewer, On certain character sums, Trans. Amer. Math. Soc. 99 (1961), 241-245. MR 22 #10959. MR 0120202 (22:10959)
  • [2] -, On primes of the form $ {u^2} + 5{v^2}$, Proc. Amer. Math. Soc. 17 (1966), 502-509. MR 32 #5610. MR 0188171 (32:5610)
  • [3] P. Chowla, A new proof and generalization of some theorems of Brewer, Norske Vid. Selsk. Forh. (Trondheim) 41 (1968), 1-3. MR 40 #5574. MR 0252353 (40:5574)
  • [4] S. Chowla, A formula similar to Jacobsthal's for the explicit value of $ x$ in $ p = {x^2} + {y^2}$ where $ p$ is a prime of the form $ 4k + 1$, Proc. Lahore Philos. Soc. 7 (1945), 2 pp. MR 7, 243. MR 0014120 (7:243g)
  • [5] -, The last entry in Gauss's diary, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 244-246. MR 10, 592.
  • [6] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 57 (1934), 151-182. MR 0258792 (41:3438)
  • [7] L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424. MR 1507083
  • [8] -, Cyclotomy and trinomial congruences, Trans. Amer. Math. Soc. 37 (1935), 363-380. MR 1501791
  • [9] -, Cyclotomy when $ e$ is composite, Trans. Amer. Math. Soc. 38 (1935), 187-200. MR 1501808
  • [10] G. Eisenstein, Zur Theorie der quadratischen Zerfallung der Primzahlen $ 8n + 3,7n + 2$ und $ 7n + 4$, J. Reine Angew. Math. 37 (1848), 97-126.
  • [11] E. Jacobsthal, Über die Darstellung der Primzahlen der Form $ 4n + 1$ als Summe zweier Quadrate, J. Reine Angew. Math. 132 (1907), 238-245.
  • [12] E. Lehmer, On the number of solutions of $ {u^k} + D \equiv {w^2}\pmod p$, Pacific J. Math. 5 (1955), 103-118. MR 16, 798. MR 0067918 (16:798b)
  • [13] W. J. LeVeque, Topics in number theory. Vol. I, Addison-Wesley, Reading, Mass., 1956. MR 18, 283. MR 0080682 (18:283d)
  • [14] J. B. Muskat, On Jacobi sums of certain composite orders, Trans. Amer. Math. Soc. 134 (1968), 483-502. MR 38 #1075. MR 0232752 (38:1075)
  • [15] T. Pepin, Mémoire sur les lois de réciprocité relatives aux résidues de puissances, Pontif. Accad. Sci. Rome 31 (1877), 40-148.
  • [16] S. F. Robinson, Theorems on Brewer sums, Pacific J. Math. 25 (1968), 587-596. MR 37 #2706. MR 0227121 (37:2706)
  • [17] L. von Schrutka, Eine Beweis für die Zerlegbarkeit der Primzahlen von der Form $ 6n + 1$ in ein einfaches und ein dreifaches Quadrat, J. Reine Angew. Math. 140 (1911), 256-265.
  • [18] L. Stickelberger, Über eine Verallgemeinerung der Kreisteilung, Math. Ann. 37 (1890), 321-367. MR 1510649
  • [19] H. Walum, Finite Fourier series and Jacobsthal sums, Dissertation, University of Colorado, Boulder, Col., 1962.
  • [20] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Indust., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann, Paris, 1948. (2ième partie, IV). MR 10, 262. MR 0027151 (10:262c)
  • [21] A. L. Whiteman, Cyclotomy and Jacobsthal sums, Amer. J. Math. 74 (1952), 89-99. MR 13, 626. MR 0045758 (13:626j)
  • [22] -, The sixteenth power residue character of 2, Canad. J. Math. 6 (1954), 364-373. MR 16, 14. MR 0062761 (16:14a)
  • [23] -, The cyclotomic numbers of order ten, Proc. Sympos. Appl. Math., vol. 10, Amer. Math. Soc., Providence, R. I., 1960, pp. 95-111. MR 22 #4682. MR 0113851 (22:4682)
  • [24] -, The cyclotomic numbers of order twelve, Acta Arith. 6 (1960), 53-76. MR 22 #9480. MR 0118709 (22:9480)
  • [25] -, A theorem of Brewer on character sums, Duke Math. J. 30 (1963), 545-552. MR 27 #4801. MR 0154857 (27:4801)
  • [26] -, Theorems on Brewer and Jacobsthal sums. I, Proc. Sympos. Pure Math., vol. 8, Amer. Math. Soc., Providence, R. I., 1965, pp. 49-55. MR 31 #137. MR 0175861 (31:137)
  • [27] -, Theorems on Brewer and Jacobsthal sums. II, Michigan Math. J. 12 (1965), 65-80. MR 36 #132. MR 0217037 (36:132)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10C20, 10G05

Retrieve articles in all journals with MSC: 10C20, 10G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0306122-5
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society