On the nonstandard representation of measures

Author:
C. Ward Henson

Journal:
Trans. Amer. Math. Soc. **172** (1972), 437-446

MSC:
Primary 28A25; Secondary 02H25

DOI:
https://doi.org/10.1090/S0002-9947-1972-0315082-2

MathSciNet review:
0315082

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper it is shown that every finitely additive probability measure on which assigns 0 to finite sets can be given a nonstandard representation using the counting measure for some -finite subset of . Moreover, if is countably additive, then can be chosen so that

**[1]**S. Banach,*Sur le problème a la mesure*, Fund. Math.**4**(1923), 7-33.**[2]**Allen R. Bernstein and Frank Wattenberg,*Nonstandard measure theory*, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 171–185. MR**0247018****[3]**Erling Følner,*On groups with full Banach mean value*, Math. Scand.**3**(1955), 243–254. MR**0079220**, https://doi.org/10.7146/math.scand.a-10442**[4]**J. L. Kelley and Isaac Namioka,*Linear topological spaces*, With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR**0166578****[5]**Peter A. Loeb,*A nonstandard representation of measurable spaces and 𝐿_{∞}*, Bull. Amer. Math. Soc.**77**(1971), 540–544. MR**0276748**, https://doi.org/10.1090/S0002-9904-1971-12745-3**[6]**-,*A nonstandard representation of measurable spaces, and*, Contributions to Nonstandard Analysis, North-Holland, Amsterdam, 1972.**[7]**W. A. J. Luxemburg,*A general theory of monads*, Applications of Model Theory to Algebra, Analysis, and Probability (Inte rnat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 18–86. MR**0244931****[8]**Moshé Machover and Joram Hirschfeld,*Lectures on non-standard analysis*, Lecture Notes in Mathematics, Vol. 94, Springer-Verlag, Berlin-New York, 1969. MR**0249285****[9]**Abraham Robinson,*On generalized limits and linear functionals*, Pacific J. Math.**14**(1964), 269–283. MR**0164235****[10]**Abraham Robinson,*Non-standard analysis*, North-Holland Publishing Co., Amsterdam, 1966. MR**0205854**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
28A25,
02H25

Retrieve articles in all journals with MSC: 28A25, 02H25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1972-0315082-2

Article copyright:
© Copyright 1972
American Mathematical Society