Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Iterated fine limits and iterated nontangential limits


Author: Kohur Gowrisankaran
Journal: Trans. Amer. Math. Soc. 173 (1972), 71-92
MSC: Primary 31D05; Secondary 31B25
DOI: https://doi.org/10.1090/S0002-9947-1972-0311927-0
MathSciNet review: 0311927
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\Omega _k},k = 1{\text{ to }}n$, be harmonic spaces of Brelot and $ {u_k} > 0$ harmonic functions on $ {\Omega _k}$. For each $ w$ in a class of multiply superharmonic functions it is shown that the iterated fine limits of $ [w/{u_1} \cdots {u_n}]$ exist up to a set of measure zero for the product of the canonical measures corresponding to $ {u_k}$ and are independent of the order of iteration. This class contains all positive multiply harmonic functions on the product of $ {\Omega _k}$'s. For a holomorphic function $ f$ in the Nevanlinna class of the polydisc $ {U^n}$, it is shown that the $ n$th iterated fine limits exist and equal almost everywhere on $ {T^n}$ the $ n$th iterated nontangential limits of $ f$, for any fixed order of iteration. It is then deduced that, with the exception of a set of measure zero on $ {T^n}$, the absolute values of the different iterated limits of $ f$ are equal. It is also shown that the $ n$th iterated nontangential limits are equal almost everywhere on $ {T^n}$ for any $ f$ in $ {N_1}({U^n})$.


References [Enhancements On Off] (What's this?)

  • [1] M. Brelot, Lectures on potential theory, Lectures on Math., no. 19, Tata Institute of Fundamental Research, Bombay, 1960. MR 22 #9749. MR 0118980 (22:9749)
  • [2] -, Séminaire de théorie du potentiel. II, Institut Henri Poincaré, Paris, 1958.
  • [3] M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), fasc. 2, 395-415. MR 33 #4299. MR 0196107 (33:4299)
  • [4] A. P. Caledrón and A. Zygmund, Contributions to Fourier analysis, Ann. of Math. Studies, no. 25, Princeton Univ. Press, Princeton, N. J., 1950, pp. 145-165. MR 12, 255.
  • [5] C. Constantinescu and A. Cornea, Über das Verhalten der analytischen Abbildungen Riemannscher Flächen auf dem idealen Rand von Martin, Nagoya Math. J. 17 (1960), 1-87. MR 23 #A1025. MR 0123703 (23:A1025)
  • [6] K. Gowrisankaran, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier (Grenoble) 13 (1963), fasc. 2, 307-356. MR 29 #1350. MR 0164051 (29:1350)
  • [7] -, Fatou-Naïm-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 16 (1966), fasc. 2, 455-467. MR 35 #1802. MR 0210917 (35:1802)
  • [8] -, Multiply harmonic functions, Nagoya Math. J. 28 (1966), 27-48. MR 35 #410. MR 0209513 (35:410)
  • [9] R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. MR 25 #3186. MR 0139756 (25:3186)
  • [10] W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969. MR 41 #501. MR 0255841 (41:501)
  • [11] L. Schwartz, Radon measures on general topological spaces, Tata Institute of Fundamental Research Monographs (to appear). MR 0426084 (54:14030)
  • [12] A. Zygmund, Trigonometrical series. Vol. 2, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31D05, 31B25

Retrieve articles in all journals with MSC: 31D05, 31B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0311927-0
Keywords: Polydisc, Nevanlinna class, holomorphic function, nontangential limit, fine limit, minimal boundary, multiply superharmonic functions, Radon measures
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society