Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Finite groups with nicely supplemented Sylow normalizers


Author: David Perin
Journal: Trans. Amer. Math. Soc. 183 (1973), 431-435
MSC: Primary 20D10
DOI: https://doi.org/10.1090/S0002-9947-1973-0393219-8
MathSciNet review: 0393219
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper considers finite groups G whose Sylow normalizers are supplemented by groups D having a cyclic Hall $ 2'$-subgroup. G is solvable and all odd order composition factors of G are cyclic. If $ S \in {\text{Syl}_2}(D)$ is cyclic, dihedral, semidihedral, or generalized quaternion, then G is almost super-solvable.


References [Enhancements On Off] (What's this?)

  • [1] D. Buchthal, On factorized groups, Trans. Amer. Math Soc. 183 (1973), 425-432. MR 0338155 (49:2921)
  • [2] W. Burnside, Theory of groups, 2nd ed., Dover, New York, 1955. MR 16, 1086. MR 0069818 (16:1086c)
  • [3] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 38 #229. MR 0231903 (38:229)
  • [4] B. Huppert, Endliche Gruppen I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 #302. MR 0224703 (37:302)
  • [5] W. Kantor and G. Seitz, Some results on 2-transitive groups, Invent. Math. 13 (1971), 125-142. MR 0316566 (47:5113)
  • [6] M. O'Nan, Illinois J. Math. (to appear).
  • [7] M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math. (2) 80 (1964), 58-77. MR 29 #145. MR 0162841 (29:145)
  • [8] H. Wielandt, Finite permutation groups, Lectures, University of Tübingen, 1954/55; English transl., Academic Press, New York, 1964. MR 32 #1252. MR 0183775 (32:1252)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20D10

Retrieve articles in all journals with MSC: 20D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0393219-8
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society