Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Extremal problems in classes of analytic univalent functions with quasiconformal extensions


Author: J. Olexson McLeavey
Journal: Trans. Amer. Math. Soc. 195 (1974), 327-343
MSC: Primary 30A60
MathSciNet review: 0346154
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This work solves many of the classical extremal problems posed in the class of functions $ {\Sigma _{K(\rho )}}$, the class of functions in $ \Sigma $ with $ K(\rho )$-quasiconformal extensions into the interior of the unit disk where $ K(\rho )$ is a piecewise continuous function of bounded variation on $ [r,1],0 \leq r < 1$. The approach taken is a variational technique and results are obtained through a limiting procedure. In particular, sharp estimates are given for the Golusin distortion functional, the Grunsky quadratic form, the first coefficient, and the Schwarzian derivative. Some extremal problems in $ {S_{K(\rho )}}$, the subclass of functions in S with $ K(\rho )$-quasiconformal extensions to the exterior of the unit disk, are also solved.


References [Enhancements On Off] (What's this?)

  • [1] P. R. Garabedian and M. Schiffer, The local maximum theorem for the coefficients of univalent functions, Arch. Rational Mech. Anal. 26 (1967), 1-32. MR 37 #1584. MR 0225994 (37:1584)
  • [2] G. M. Goluzin, Method of variations in conformal mapping, Mat. Sb. 21 (63) (1947), 83-117. (Russian) MR 9, 421. MR 0023908 (9:421e)
  • [3] -, Geometric theory of functions of a complex variable, GITTL, Moscow, 1952; English transl., Transl. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R. I., 1969. MR 15, 112; 40 #308. MR 0247039 (40:308)
  • [4] H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z. 45 (1939), 20-61. MR 1545803
  • [5] R. Kühnau, Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen typ für quasikonforme Abbildungen, Math. Nachr. 48 (1971), 77-105. MR 45 #5350. MR 0296289 (45:5350)
  • [6] O. Lehto and K. I. Vertanen, Quasikonforme Abbildungen, Die math. Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 126, Springer-Verlag, Berlin and New York, 1965. MR 32 #5872. MR 0188434 (32:5872)
  • [7] C. Loewner, Über Extremumsätze bei der konformen Abbildung des Ausseren des Einheitskreises, Math. Z. 3 (1919), 65-77. MR 1544336
  • [8] J. O. McLeavey, Extremal problems in classes of analytic univalent functions with quasiconformal extension, Ph. D. thesis, Indiana University, Bloomington, Ind., July, 1972.
  • [9] R. N. Pederson, On unitary properties of Grunsky's matrix, Arch. Rational Mech. Anal. 29 (1968), 370-377. MR 37 #2972. MR 0227388 (37:2972)
  • [10] H. Renalt, Behandlung von Abbildungsproblemen der quasikonformen Abbildung mittels direkter Variationsmethoden, Ph. D. Thesis, Martin-Luther-Universitat, Halle-Wittenberg, May, 1971.
  • [11] M. Schiffer, A variational method for univalent quasiconformal mappings, Duke Math. J. 33 (1966), 395-411. MR 33 #5883. MR 0197720 (33:5883)
  • [12] M. Schiffer and G. Schober, An extremal problem for Fredholm eigenvalues, Arch. Rational Mech. Anal. 44 (1971), 83-92. MR 0342690 (49:7435)
  • [13] -, Remark on the paper ``An extremal problem for Fredholm eigenvalues", Arch. Rational Mech. Anal. 46 (1972), 394. MR 0342691 (49:7436)
  • [14] I. Schur, On Faber polynomials. Amer. J. Math. 67 (1945), 33-41. MR 6, 210. MR 0011740 (6:210b)
  • [15] -, Ein Satz ueber quadratische Formen mit komplexen Koeffizienten, Amer. J. Math. 67 (1945), 472-480. MR 7, 234. MR 0014048 (7:234c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A60

Retrieve articles in all journals with MSC: 30A60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0346154-6
PII: S 0002-9947(1974)0346154-6
Keywords: Quasiconformal mapping, Schiffer's variational method, extremal problems, Golusin's distortion theorem, Grunsky inequalities, Schwarzian derivative
Article copyright: © Copyright 1974 American Mathematical Society