Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Axisymmetric harmonic interpolation polynomials in $ {\bf R}\sp{N}$


Author: Morris Marden
Journal: Trans. Amer. Math. Soc. 196 (1974), 385-402
MSC: Primary 31B99
MathSciNet review: 0348130
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Corresponding to a given function $ F(x,\rho )$ which is axisymnetric harmonic in an axisymmetric region $ \Omega \subset {{\text{R}}^3}$ and to a set of $ n + 1$ circles $ {C_n}$ in an axisymmetric subregion $ A \subset \Omega $, an axisymmetric harmonic polynomial $ {\Lambda _n}(x,\rho ;{C_n})$ is found which on the $ {C_n}$ interpolates to $ F(x,\rho )$ or to its partial derivatives with respect to x. An axisymmetric subregion $ B \subset \Omega $ is found such that $ {\Lambda _n}(x,\rho ;{C_n})$ converges uniformly to $ F(x,\rho )$ on the closure of B. Also a $ {\Lambda _n}(x,\rho ;{x_0},{\rho _0})$ is determined which, together with its first n partial derivatives with respect to x, coincides with $ F(x,\rho )$ on a single circle $ ({x_0},{\rho _0})$ in $ \Omega $ and converges uniformly to $ F(x,\rho )$ in a closed torus with $ ({x_0},{\rho _0})$ as central circle.


References [Enhancements On Off] (What's this?)

  • [1] S. Bergman, Integral operators in the theory of linear partial differential equations, Ergebnisse der Math. und ihrer Grenzgebiete, Heft 23, Springer-Verlag, Berlin, 1961. MR 25 #5277. MR 0141880 (25:5277)
  • [2] P. J. Davis, Interpolation and approximation, Blaisdell, New York, 1963. MR 28 #393. MR 0157156 (28:393)
  • [3] R. P. Gilbert, Function theoretic methods in partial differential equations, Math. in Science and Engineering, vol. 54, Academic Press, New York, 1969. MR 39 #3127. MR 0241789 (39:3127)
  • [4] O. D. Kellogg, Foundations of potential theory, Springer-Verlag, Berlin, 1929. MR 0222317 (36:5369)
  • [5] M. Marden, Value distributions of harmonic polynomials in several real variables, Trans. Amer. Math. Soc. 159 (1971), 137-154. MR 43 #5046. MR 0279323 (43:5046)
  • [6] L. M. Milne-Thomson, Theoretical hydrodynamics, 3rd ed., Macmillan, New York, 1956. MR 17, 796. MR 0075724 (17:796b)
  • [7] G. Szegö, Orthogonal polynomials, 2nd rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1959. MR 21 #5029. MR 0106295 (21:5029)
  • [8] V. I. Smirnov and N. A. Lebedev, The constructive theory of functions of a complex variable, ``Nauka", Moscow, 1964; English transl., Functions of a complex variable: Constructive theory, M.I.T. Press, Cambridge, Mass., 1968. MR 30 #2152; 37 #5369. MR 0171926 (30:2152)
  • [9] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 4th rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence R. I., 1965. MR 36 #1672b. MR 0218588 (36:1672b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31B99

Retrieve articles in all journals with MSC: 31B99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1974-0348130-6
PII: S 0002-9947(1974)0348130-6
Keywords: Axisymmetric harmonic polynomial, axisymmetric harmonic function, harmonic interpolation polynomial, Bergman operator method
Article copyright: © Copyright 1974 American Mathematical Society