Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fixed points of pointwise almost periodic homeomorphisms on the two-sphere


Author: W. K. Mason
Journal: Trans. Amer. Math. Soc. 202 (1975), 243-258
MSC: Primary 54H25
DOI: https://doi.org/10.1090/S0002-9947-1975-0362280-0
MathSciNet review: 0362280
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A homeomorphism $ f$ of the two-sphere $ {S^2}$ onto itself is defined to be pointwise almost periodic (p.a.p.) if the collection of orbit closures forms a decomposition of $ {S^2}$. It is shown that if $ f:{S^2} \to {S^2}$ is p.a.p. and orientation-reversing then the set of fixed points of $ f$ is either empty or a simple closed curve; if $ f:{S^2} \to {S^2}$ is p.a.p. orientation-preserving and has a finite number of fixed points, then $ f$ is shown to have exactly two fixed points.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51. MR 13, 265. MR 0043451 (13:265b)
  • [2] L. E. J. Brouwer, Beweis des ebenen Translationsatzes, Math. Ann. 72 (1912), 37-54. MR 1511684
  • [3] M. Cartwright and J. Littlewood, Some fixed point theorems, Ann. of Math. (2) 54 (1951), 1-37. MR 13, 148. MR 0042690 (13:148f)
  • [4] A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1-8. MR 33 #1850. MR 0193634 (33:1850)
  • [5] S. Eilenberg, Sur les transformations périodiques de la surface de sphère, Fund. Math. 22 (1934), 28-41.
  • [6] O. H. Hamilton, A short proof of the Cartwright-Littlewood fixed point theorem, Canad. J. Math. 6 (1954), 522-524. MR 16, 276. MR 0064394 (16:276a)
  • [7] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857. MR 0125557 (23:A2857)
  • [8] W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R. I., 1955. MR 17, 650. MR 0074810 (17:650e)
  • [9] B. de Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann. 80 (1919-1920), 36-38. MR 1511945
  • [10] -, The plane translation theorem of Brouwer and the last geometric theorem of Poincaré, Acta Sci. Math. (Szeged) 4 (1928), 86-102.
  • [11] -, Topologische Charakterisierung der linearen Abbildungen, Acta Sci. Math. (Szeged) 6 (1934), 235-262.
  • [12] W. K. Mason, Weakly almost periodic homeomorphisms of the two-sphere, Pacific J. Math. 48 (1973), 185-196. MR 0331355 (48:9689)
  • [13] R. L. Moore, Foundations of point set topology, Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 0150722 (27:709)
  • [14] M. Ohtsuka, Dirichlet problem, extremal length and prime ends, Van Nostrand, New York, 1970.
  • [15] H. D. Ursell and L. C. Young, Remarks on the theory of prime ends, Mem. Amer. Math. Soc. No. 3 (1951). MR 13, 55. MR 0042110 (13:55a)
  • [16] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1963. MR 32 #425. MR 0182943 (32:425)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54H25

Retrieve articles in all journals with MSC: 54H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0362280-0
Keywords: Pointwise almost periodic transformation, recurrent point, prime ends, periodic transformation
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society