Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On $ J$-convexity and some ergodic super-properties of Banach spaces


Authors: Antoine Brunel and Louis Sucheston
Journal: Trans. Amer. Math. Soc. 204 (1975), 79-90
MSC: Primary 46B05
DOI: https://doi.org/10.1090/S0002-9947-1975-0380361-2
MathSciNet review: 0380361
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given two Banach spaces $ F\vert\vert$ and $ X\vert\vert\,\vert\vert$, write $ F{\text{ fr }}X{\text{ iff}}$ for each finite-dimensional subspace $ F'$ of $ F$ and each number $ \varepsilon > 0$, there is an isomorphism $ V$ of $ F'$ into $ X$ such that $ \vert\vert x\vert - \vert\vert Vx\vert\vert\vert \leq \varepsilon $ for each $ x$ in the unit ball of $ F'$. Given a property $ {\mathbf{P}}$ of Banach spaces, $ X$ is called super- $ {\mathbf{P}}{\text{ iff }}F{\text{ fr }}X$ implies $ F$ is $ {\mathbf{P}}$. Ergodicity and stability were defined in our articles On $ B$-convex Banach spaces, Math. Systems Theory 7 (1974), 294-299, and C. R. Acad. Sci. Paris Ser. A 275 (1972), 993, where it is shown that super-ergodicity and super-stability are equivalent to super-reflexivity introduced by R. C. James [Canad. J. Math. 24 (1972), 896-904]. $ Q$-ergodicity is defined, and it is proved that super-$ Q$-ergodicity is another property equivalent with super-reflexivity. A new proof is given of the theorem that $ J$-spaces are reflexive [Schaffer-Sundaresan, Math. Ann. 184 (1970), 163-168]. It is shown that if a Banach space $ X$ is $ B$-convex, then each bounded sequence in $ X$ contains a subsequence $ ({y_n})$ such that the Cesàro averages of $ {( - 1)^i}{y_i}$ converge to zero.


References [Enhancements On Off] (What's this?)

  • [1] Albert Baernstein II, On reflexivity and summability, Studia Math. 42 (1972), 91-94. MR 0305044 (46:4174)
  • [2] Anatole Beck, On the strong law of large numbers, Ergodic Theory (Proc. Internat. Sympos., Tulane Univ., New Orleans, La., 1961), Academic Press, New York, 1963, pp. 21 -53. MR 28 #3470. MR 0160256 (28:3470)
  • [3] A. Brunel and L. Sucheston, On $ B$-convex Banach spaces, Math. Systems Theory 7 (1974), 294-299. MR 0438085 (55:11004)
  • [4] A. Brunel and L. Sucheston, Sur quelques conditions équivalentes à la super-refléxivité dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A993-A994. MR 47 #7389. MR 0318843 (47:7389)
  • [5] M. M. Day, Normed linear spaces, Springer-Verlag, New York, 1970. MR 0094675 (20:1187)
  • [6] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [7] P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm Israel J. Math. 13 (1973), 281-288. MR 0336297 (49:1073)
  • [8] D. P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114-146. MR 34 #4866e. MR 0205031 (34:4866)
  • [9] D. P. Giesy and R. C. James, Uniformly non-$ {l_1}$ and $ B$-convex Banach spaces, Studia Math. 48 (1973), 61-69. MR 0333669 (48:11994)
  • [10] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542-550. MR 30 #4139. MR 0173932 (30:4139)
  • [11] -, Some self-dual properties of normed linear spaces, Sympos. Infinite Dimensional Topology, Ann. of Math. Studies, no. 69, Princeton Univ. Press, Princeton, N. J., 1972. MR 0454600 (56:12849)
  • [12] -, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896-904. MR 0320713 (47:9248)
  • [13] -, A nonreflexive Banach space that is uniformly nonoctahedral (to appear).
  • [14] R. C. James and J. J. Schaffer, Super-reflexivity and the girth of spheres, Israel J. Math. 11 (1972), 398-404. MR 46 #4175. MR 0305045 (46:4175)
  • [15] J. Lindenstrauss, On James's paper ``Separable conjugate spaces", Israel J. Math. 9 (1971), 279-284. MR 43 #5289. MR 0279567 (43:5289)
  • [16] J. T. Marti, Introduction to the theory of bases, Springer-Verlag, New York, 1969. MR 0438075 (55:10994)
  • [17] T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57. MR 27 #5107. MR 0155167 (27:5107)
  • [18] A. Pełczyński, A note on the paper of I. Singer ``Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1961/62), 371-374. MR 26 #4156. MR 0146636 (26:4156)
  • [19] J. J. Schaffer and K. Sundaresan, Reflexivity and the girth of spheres, Math. Ann. 184 (1969/70), 163-168. MR 41 #4209. MR 0259571 (41:4209)
  • [20] J. Silver, Every analytic set is Ramsey, J. Symblic Logic 35 (1970), 60-64. MR 0332480 (48:10807)
  • [21] I. Singer, Bases and quasi-reflexivity of Banach spaces, Math. Ann. 153 (1964), 199-209. MR 28 #5321. MR 0162121 (28:5321)
  • [22] -, Bases in Banach spaces. I, Die Grundlehren der math. Wissenschaften, Band 154, Springer-Verlag, New York, 1970. MR 45 #7451. MR 0298399 (45:7451)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B05

Retrieve articles in all journals with MSC: 46B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0380361-2
Keywords: Super-properties, $ J$-convexity, $ B$-convexity, ergodic, reflexive, Banach-Saks
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society