Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ S$-operations in representation theory


Author: Evelyn Hutterer Boorman
Journal: Trans. Amer. Math. Soc. 205 (1975), 127-149
MSC: Primary 20C30
DOI: https://doi.org/10.1090/S0002-9947-1975-0364424-3
MathSciNet review: 0364424
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $ G$ a group and $ {\text{A} ^G}$ the category of $ G$-objects in a category A$ $, a collection of functors, called ``$ S$-operations,'' is introduced under mild restrictions on A$ $. With certain assumptions on A$ $ and with $ G$ the symmetric group $ {S_k}$, one obtains a unigeneration theorem for the Grothendieck ring formed from the isomorphism classes of objects in $ {\text{A} ^{{S_k}}}$. For A = finite-dimensional vector spaces over $ C$, the result says that the representation ring $ R({S_k})$ is generated, as a $ \lambda $-ring, by the canonical $ k$-dimensional permutation representation. When A = finite sets, the $ S$-operations are called ``$ \beta $-operations,'' and the result says that the Burnside ring $ B({S_k})$ is generated by the canonical $ {S_k}$-set if $ \beta $-operations are allowed along with addition and multiplication.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah, Power operations in $ K$-theory, Quart. J. Math. Oxford Ser. (2) 17 (1966), 165-193. MR 34 #2004. MR 0202130 (34:2004)
  • [2] M. Atiyah and D. O. Tall, Group representations, $ \lambda $-rings, and the $ J$-homomorphism, Topology 8 (1969), 253-297. MR 39 #5702. MR 0244387 (39:5702)
  • [3] H. Bass, Algebraic $ K$-theory, Benjamin, New York 1968. MR 40 #2736. MR 0249491 (40:2736)
  • [4] A. Dress, Representations of finite groups. 1. The Burnside ring (mimeographed notes, Bielefeld, 1971). MR 0360771 (50:13218)
  • [5] D. Knutson, $ \lambda $-rings and the representation theory of the symmetric group, Lecture Notes in Math., vol. 308, Springer-Verlag, Berlin and New York, 1973. MR 0364425 (51:679)
  • [6] B. Mitchell, Theory of categories, Academic Press, New York, 1965. MR 34 #2647. MR 0202787 (34:2647)
  • [7] N. Saavedra Rivano, Categories Tannakiennes, Lecture Notes in Math., vol. 265, Springer-Verlag, Berlin and New York, 1972. MR 0338002 (49:2769)
  • [8] J.-P. Serre, Representations linéaires des groupes finis, Hermann, Paris, 1967. MR 38 #1190. MR 0232867 (38:1190)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20C30

Retrieve articles in all journals with MSC: 20C30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0364424-3
Keywords: Representation ring, Grothendieck ring, $ \lambda $-ring, Burnside ring
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society