Continua in which all connected subsets are arcwise connected

Author:
E. D. Tymchatyn

Journal:
Trans. Amer. Math. Soc. **205** (1975), 317-331

MSC:
Primary 54F20

DOI:
https://doi.org/10.1090/S0002-9947-1975-0365523-2

MathSciNet review:
0365523

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a metric continuum such that every connected subset of is arcwise connected. Some facts concerning the distribution of local cutpoints of are obtained. These results are used to prove that is a regular curve.

**[1]**K. Kuratowski and B. Knaster,*A connected and connected im kleinen point set which contains no perfect subset*, Bull. Amer. Math. Soc.**33**(1927), 106. MR**1561328****[2]**E. D. Tymchatyn,*Continua whose connected subsets are arcwise connected*, Colloq. Math.**24**(1971/72), 169-174, 286. MR**46**#9946. MR**0310848 (46:9946)****[3]**G. T. Whyburn,*On the existence of totally imperfect and punctiform connected sets in a given continuum*, Amer. J. Math.**55**(1933), 146-152. MR**1506952****[4]**-,*Local separating points of continua*, Monatsh. Math. Phys.**36**(1929), 305-314. MR**1549688****[5]**-,*Decompositions of continua by means of local separating points*, Amer. J. Math.**55**(1933), 437-457. MR**1506978****[6]**G. T. Whyburn,*Sets of local separating points of a continuum*, Bull. Amer. Math. Soc.**39**(1933), 97-100. MR**1562558****[7]**-,*Concerning points of continuous curves defined by certain im kleinen properties*, Math. Ann.**102**(1930), 313-336. MR**1512580****[8]**-,*Analytic topology*, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942. MR**4**, 86.**[9]**L. E. Ward, Jr.,*Partially ordered topological spaces*, Proc. Amer. Math. Soc.**5**(1954), 141-161. MR**16**, 59. MR**0063016 (16:59b)****[10]**L. Mohler,*Cuts and weak cuts in metric continua*, Proc. Conf. Point Set Topology (Univ. of Houston, Houston, Tex., 1971). MR**0410694 (53:14441)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54F20

Retrieve articles in all journals with MSC: 54F20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1975-0365523-2

Keywords:
Regular curves,
arcwise connected,
continua,
hereditarily locally connected

Article copyright:
© Copyright 1975
American Mathematical Society