Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Singularity subschemes and generic projections


Author: Joel Roberts
Journal: Trans. Amer. Math. Soc. 212 (1975), 229-268
MSC: Primary 14E25; Secondary 14N05, 14B05
DOI: https://doi.org/10.1090/S0002-9947-1975-0422274-3
MathSciNet review: 0422274
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Corresponding to a morphism $ f:V \to W$ of algebraic varieties (such that $ \dim (V) \leqslant \dim (W)$), we construct a family of subschemes $ S_1^{(q)}(f) \subset V$. When V and W are nonsingular, the $ S_1^{(q)},q \geqslant 1$, induce a filtration of the set of closed points $ x \in V$ such that the tangent space map $ d{f_x}:T{(V)_x} \to T{(W)_{f(x)}}$ has rank $ = \dim (V) - 1$. We prove that if V is a suitably embedded nonsingular projective variety and $ \pi :V \to {{\mathbf{P}}^m}$ is a generic projection, then the $ S_1^{(q)}(f)$ and certain fibre products of several of the $ S_1^{(q)}(f)$ are either empty or smooth and of the smallest possible dimension, except in cases where $ q + 1$ is divisible by the characteristic of the ground field. We apply this result to describe explicitly the ring homomorphisms $ {\pi ^\ast}:{\hat{\mathcal{O}}_{{{\mathbf{P}}^m}\pi (x)}} \to {\hat{\mathcal{O}}_{V,x}}$ and (when $ m \geqslant r + 1$) to study the local structure of the image $ V' = \pi (V) \subset {{\mathbf{P}}^m}$.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. No. 33 (1967), 21-57. MR 37 #6945. MR 0231390 (37:6945)
  • [2] J. A. Eagon and D. G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Roy. Soc. London Ser. A 269 (1962), 188-204. MR 26 #161. MR 0142592 (26:161)
  • [3] H. Fitting, Die Determinantenideale eines Moduls, Jber. Deutsch. Math.-Verein. 46 (1936), 195-228.
  • [4] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, 4e partie,Rédigés avec la collaboration de J. Dieudonné, Inst. Hautes Études Sci. Publ. Math. No. 32 (1967). MR 39 #220.
  • [5] H. I. Levine, The singularities $ S_1^q$, Illinois J. Math 8 (1964), 152-168. MR 28 #2560. MR 0159343 (28:2560)
  • [6] J. Mather, Generic projections, Ann. of Math. (2) 98 (1973), 226-245. MR 0362393 (50:14835)
  • [7] B. Morin, Formes canoniques des singularités d'une application différentiable, C. R. Acad. Sci. Paris 260 (1965), 5662-5665. MR 31 #5212. MR 0180982 (31:5212)
  • [8] K. Mount and O. Villamayor, An algebraic construction of the generic singularities of Boardman-Thom, Inst. Hautes Études Sci. Publ. Math. No. 43 (1974), 205-244. MR 0348788 (50:1283)
  • [9] M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790. MR 0155856 (27:5790)
  • [10] D. Northcott, Some remarks on the theory of ideals defined by matrices, Quart. J. Math. Oxford Ser. (2) 14 (1963), 193-204. MR 27 #1467. MR 0151482 (27:1467)
  • [11] J. Roberts, Generic projections of algebraic varieties, Amer. J. Math. 93 (1971), 191-214. MR 43 #3263. MR 0277530 (43:3263)
  • [12] -, The variation of singular cycles in an algebraic family of morphisms, Trans. Amer. Math. Soc. 168 (1972), 153-164. MR 46 #5326. MR 0306199 (46:5326)
  • [13] -, Singularity subschemes and generic projections, Bull. Amer. Math. Soc. 78 (1972), 706-708. MR 46 #175. MR 0301015 (46:175)
  • [14] -, Generic coverings of $ {P^r}$ when $ {\text{char}}(k) > 0$, Notices Amer. Math. Soc. 20 (1973), A-383. Abstract #704-A5.
  • [15] S. Suzuki, Differentials of commutative rings, Queen's Papers in Pure and Appl. Math., no. 29, Queen's University, Kingston, Ont., 1971. MR 0376645 (51:12820)
  • [16] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 43-87. MR 19, 310. MR 0087149 (19:310a)
  • [17] H. Whitney, Singularities of mappings of Euclidean spaces, Sympos. Internac. de Topología Algebraica, Universidad Nacional Autónoma de Mexico and UNESCO, Mexico City, 1958, pp. 285-301. MR 20 #4877. MR 0098418 (20:4877)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14E25, 14N05, 14B05

Retrieve articles in all journals with MSC: 14E25, 14N05, 14B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1975-0422274-3
Keywords: Projective algebraic variety, generic projection, Kähler differentials, algebra of principal parts, noetherian scheme, scheme-theoretic fibre, singularity subscheme
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society