Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the structure of certain subalgebras of a universal enveloping algebra


Authors: Bertram Kostant and Juan Tirao
Journal: Trans. Amer. Math. Soc. 218 (1976), 133-154
MSC: Primary 17B35
DOI: https://doi.org/10.1090/S0002-9947-1976-0404367-0
MathSciNet review: 0404367
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The representation theory of a semisimple group G, from an algebraic point of view, reduces to determining the finite dimensional representation of the centralizer $ {U^\mathfrak{k}}$ of the maximal compact subgroup K of G in the universal enveloping algebra U of the Lie algebra $ \mathfrak{g}$ of G. The theory of spherical representations has been determined in this way since by a result of Harish-Chandra $ {U^\mathfrak{k}}$ modulo a suitable ideal I is isomorphic to the ring of Weyl group W invariants $ U{(\mathfrak{a})^W}$ in a suitable polynomial ring $ U(\mathfrak{a})$. To deal with the general case one must determine the image of $ {U^\mathfrak{k}}$ in $ U(\mathfrak{k}) \otimes U(\mathfrak{a})$, where $ \mathfrak{k}$ is the Lie algebra of K. We prove that if W is replaced by the Kunze-Stein intertwining operators $ \tilde W$ then $ {U^\mathfrak{k}}$ suitably localized and completed is indeed isomorphic to $ U(\mathfrak{k}) \otimes U{(\mathfrak{a})^{\tilde W}}$ suitably localized and completed.


References [Enhancements On Off] (What's this?)

  • [1] L. Conn, Some theorems on C-functions (to appear).
  • [2] J. Dieudonné and J. B. Carrell, Invariant theory, old and new, Advances in Math. 4 (1970), 1-80. MR 41 #186. MR 0255525 (41:186)
  • [3] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. MR 0498737 (58:16803a)
  • [4] A. Erdélyi, Asymptotic expansions, Dover, New York, 1956. MR 17 #1202. MR 0078494 (17:1202c)
  • [5] A. Knapp and E. Stein, Intertwining operators for semi-simple Lie groups, Ann. of Math. (2) 93 (1971), 489-578. MR 0460543 (57:536)
  • [6] B. Kostant, On the existence and irreducibility of certain series of representations, 1971 Summer School in Math., edited by I. M. Gelfand.
  • [7] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809. MR 47 #399. MR 0311837 (47:399)
  • [8] R. A. Kunze and E. M. Stein, Uniformly bounded representations. III. Intertwining operators for the principal series on semisimple groups, Amer. J. Math. 89 (1967), 385-442. MR 38 #269. MR 0231943 (38:269)
  • [9] J. Lepowsky, Algebraic results on representations of semi-simple Lie groups, Trans. Amer. Math. Soc. 176 (1973), 1-44. MR 0346093 (49:10819)
  • [10] J. Lepowsky and G. W. McCollum, On the determination of irreducible modules by restriction to a subalgebra, Trans. Amer. Math. Soc. 176 (1973), 45-57. MR 48 #2201. MR 0323846 (48:2201)
  • [11] W. Magnus, F. Oberbettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, 3rd ed., Die Grundlehren der math. Wissenschaften, Band 52, Springer-Verlag, New York, 1966. MR 38 #1291. MR 0232968 (38:1291)
  • [12] G. Schiffmann, Intégrales d'entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971), 3-72. MR 47 #400. MR 0311838 (47:400)
  • [13] N. Wallach, Harmonic analysis on homogeneous spaces, Dekker, New York, 1973. MR 0498996 (58:16978)
  • [14] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, 1972. MR 0498999 (58:16979)
  • [15] D. Mumford, Introduction to algebraic geometry, Harvard Univ. Notes.
  • [16] S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York, 1962. MR 26 #2986. MR 0145455 (26:2986)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B35

Retrieve articles in all journals with MSC: 17B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0404367-0
Keywords: Universal enveloping algebra, intertwining operators, Weyl group, centralizer of the maximal compact subgroup, valuation on enveloping algebra
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society