Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Centralisers of $ C\sp{\infty }$ diffeomorphisms

Author: Boyd Anderson
Journal: Trans. Amer. Math. Soc. 222 (1976), 97-106
MSC: Primary 58F99; Secondary 57D50
MathSciNet review: 0423424
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if F is a hyperbolic contraction of $ {R^n}$, coordinates may be chosen so that not only is F a polynomial mapping, but so is any diffeomorphism which commutes with F. This implies an identity principle for diffeomorphisms $ {G_1}$ and $ {G_2}$ commuting with an arbitrary Morse-Smale diffeomorphism F of a compact manifold M: if $ {G_1},{G_2} \in Z(F)$, then $ {G_1} = {G_2}$ on an open subset of $ M \Rightarrow {G_1} \equiv {G_2}$ on M.

Finally it is shown that under a certain linearisability condition at the saddles of F, $ Z(F)$ is in fact a Lie group in its induced topology.

References [Enhancements On Off] (What's this?)

  • [1] George D. Birkhoff, Dynamical systems, With an addendum by Jurgen Moser. American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. MR 0209095 (35 #1)
  • [2] Kuo-Tsai Chen, Local diffeomorphisms—𝐶^{∞} realization of formal properities, Amer. J. Math. 87 (1965), 140–157. MR 0173271 (30 #3484)
  • [3] Nancy Kopell, Commuting diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 165–184. MR 0270396 (42 #5285)
  • [4] H. I. Levine, Singularities of differentiable mappings, Proc. Liverpool Singularities Sympos., I, Lecture Notes in Math., vol. 192, Springer-Verlag, Berlin and New York, 1971, p. 6.
  • [5] John N. Mather, Stability of 𝐶^{∞} mappings. II. Infinitesimal stability implies stability, Ann. of Math. (2) 89 (1969), 254–291. MR 0259953 (41 #4582)
  • [6] J. Palis and S. Smale, Structural stability theorems, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 223–231. MR 0267603 (42 #2505)
  • [7] Shlomo Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math. 79 (1957), 809–824. MR 0096853 (20 #3335)
  • [8] Shlomo Sternberg, On the structure of local homeomorphisms of euclidean 𝑛-space. II., Amer. J. Math. 80 (1958), 623–631. MR 0096854 (20 #3336)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F99, 57D50

Retrieve articles in all journals with MSC: 58F99, 57D50

Additional Information

PII: S 0002-9947(1976)0423424-6
Article copyright: © Copyright 1976 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia