Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Centralisers of $ C\sp{\infty }$ diffeomorphisms


Author: Boyd Anderson
Journal: Trans. Amer. Math. Soc. 222 (1976), 97-106
MSC: Primary 58F99; Secondary 57D50
DOI: https://doi.org/10.1090/S0002-9947-1976-0423424-6
MathSciNet review: 0423424
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if F is a hyperbolic contraction of $ {R^n}$, coordinates may be chosen so that not only is F a polynomial mapping, but so is any diffeomorphism which commutes with F. This implies an identity principle for diffeomorphisms $ {G_1}$ and $ {G_2}$ commuting with an arbitrary Morse-Smale diffeomorphism F of a compact manifold M: if $ {G_1},{G_2} \in Z(F)$, then $ {G_1} = {G_2}$ on an open subset of $ M \Rightarrow {G_1} \equiv {G_2}$ on M.

Finally it is shown that under a certain linearisability condition at the saddles of F, $ Z(F)$ is in fact a Lie group in its induced topology.


References [Enhancements On Off] (What's this?)

  • [1] G. D. Birkhoff, Dynamical systems, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, p. 62. MR 0209095 (35:1)
  • [2] K.-T. Chen, Local diffeomorphisms- $ {C^\infty }$ realization of formal properties, Amer. J. Math. 87 (1965), 140-157. MR 30 #3484. MR 0173271 (30:3484)
  • [3] N. Kopell, Commuting diffeomorphisms, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 165-184. MR 42 #5285. MR 0270396 (42:5285)
  • [4] H. I. Levine, Singularities of differentiable mappings, Proc. Liverpool Singularities Sympos., I, Lecture Notes in Math., vol. 192, Springer-Verlag, Berlin and New York, 1971, p. 6.
  • [5] J. N. Mather, Stability of $ {C^\infty }$ mappings. II: Infinitesimal stability implies stability, Ann. of Math. (2) 89 (1969), 254-291. MR 41 #4582. MR 0259953 (41:4582)
  • [6] J. Palis and S. Smale, Structural stability theorems, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 223-231. MR 42 #2505. MR 0267603 (42:2505)
  • [7] S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math. 79 (1957), 809-824. MR 20 #3335. MR 0096853 (20:3335)
  • [8] -, On the structure of local homeomorphisms of Euclidean n-space. II, Amer. J. Math. 80 (1958), 623-631. MR 20 #3336. MR 0096854 (20:3336)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F99, 57D50

Retrieve articles in all journals with MSC: 58F99, 57D50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0423424-6
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society