Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hausdorff measure functions in the space of compact subsets of the unit interval


Author: P. R. Goodey
Journal: Trans. Amer. Math. Soc. 226 (1977), 203-208
MSC: Primary 28A75
DOI: https://doi.org/10.1090/S0002-9947-1977-0427600-9
MathSciNet review: 0427600
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The work done in this paper is the result of an attempt to classify those functions h for which the corresponding Hausdorff measure of $ \mathcal{F}[0,1]$ is zero. A partial characterization is achieved and in doing this some problems of E. Boardman are solved.


References [Enhancements On Off] (What's this?)

  • [1] E. Boardman, Some Hausdorff measure properties of the space of compact subsets of [0,1], Quart. J. Math. Oxford Ser. (2) 24 (1973), 333-341. MR 48 #8728. MR 0330391 (48:8728)
  • [2] A. Dvoretzky, A note on Hausdorff dimension functions, Proc. Cambridge Philos. Soc. 44 (1948), 13-16. MR 9, 275. MR 0022896 (9:275c)
  • [3] C. A. Rogers, Hausdorff measures, Cambridge Univ. Press, New York and London, 1970. MR 43 #7576. MR 0281862 (43:7576)
  • [4] C. A. Rogers and S. J. Taylor, Additive set functions in Euclidean space. II, Acta Math. 109 (1963), 207-240. MR 28 #4070. MR 0160860 (28:4070)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A75

Retrieve articles in all journals with MSC: 28A75


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0427600-9
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society