Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Structure of subalgebras between $ L\sp{\infty }$ and $ H\sp{\infty }$


Author: Sun Yung A. Chang
Journal: Trans. Amer. Math. Soc. 227 (1977), 319-332
MSC: Primary 46J15; Secondary 30A98
DOI: https://doi.org/10.1090/S0002-9947-1977-0433213-5
MathSciNet review: 0433213
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let B be a closed subalgebra of $ {L^\infty }$ of the unit circle which contains $ {H^\infty }$ properly. Let $ {C_B}$ be the $ {C^\ast}$-algebra generated by the inner functions that are invertible in B. It is shown that the linear span $ {H^\infty } + {C_B}$ is equal to B. Also, a closed subspace (called $ VM{O_B}$) of BMO (space of functions of bounded mean oscillation) is identified to which B bears the same relation as $ {L^\infty }$ does to BMO.


References [Enhancements On Off] (What's this?)

  • [1] R. G. Douglas, On the spectrum of Toeplitz and Wiener-Hopf operators, Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968), Birkhäuser, Basel, 1969, pp. 53-66. MR 41 #4274. MR 0259638 (41:4274)
  • [2] D. E. Marshall, Subalgebras of $ {L^\infty }$ containing $ {H^\infty }$, Acta Math. 137 (1976), 91-98. MR 0428045 (55:1074b)
  • [3] S. Y. Chang, A characterization of Douglas subalgebra, Acta Math. 137 (1976), 81-89. MR 0428044 (55:1074a)
  • [4] D. E. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299. MR 48 #2777. MR 0324425 (48:2777)
  • [5] D. E. Sarason, Algebras between $ {L^\infty }$ and $ {H^\infty }$, Lecture Notes in Math., vol. 512, Springer-Verlag, Berlin and New York, 1976, pp. 117-129. MR 0493361 (58:12386)
  • [6] R. G. Douglas and W. Rudin, Approximation by inner functions, Pacific J. Math. 31 (1969), 313-320. MR 40 #7814. MR 0254606 (40:7814)
  • [7] K. Hoffman and I. M. Singer, Maximal subalgebras of continuous functions, Acta Math. 103 (1960), 217-241. MR 22 #8318. MR 0117540 (22:8318)
  • [8] H. Helson and D. E. Sarason, Past and future, Math. Scand. 21 (1967), 5-16 (1968), MR 38 #5282. MR 0236989 (38:5282)
  • [9] A. M. Davie, T. W. Gamelin and J. Garnett, Distance estimates and pointwise bounded density, Trans. Amer. Math. Soc. 175 (1973), 37-68. MR 47 #2068. MR 0313514 (47:2068)
  • [10] S. Y. Chang, On the structure and characterization of some Douglas algebras, Amer. J. Math. (to appear). MR 0461143 (57:1128)
  • [11] D. E. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. MR 0377518 (51:13690)
  • [12] S. Axler, Some properties of $ {H^\infty } + {L_E}$ (preprint).
  • [13] T. Weight, Dissertation, University of California, Los Angeles, 1976.
  • [14] A. Bernard, J. B. Garnett and D. E. Marshall, The algebra generated by inner functions (preprint). MR 0442691 (56:1072)
  • [15] V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems, Funkcional. Anal. i Priložen 2 (1968), 1-17 = Functional Anal. Appl. 2 (1968), 269-281. MR 0636333 (58:30446)
  • [16] M. Lee and D. E. Sarason, The spectra of some Toeplitz operators, J. Math. Anal. Appl. 33 (1971), 529-543. MR 43 #960. MR 0275203 (43:960)
  • [17] R. G. Douglas and D. E. Sarason, Fredholm Toeplitz operators, Proc. Amer. Math. Soc. 26 (1970), 117-120. MR 41 #4275. MR 0259639 (41:4275)
  • [18] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288. MR 34 #1846. MR 0201969 (34:1846)
  • [19] R. G. Douglas, Banach algebra technique in operator theory, Academic Press, New York, 1972. MR 0361893 (50:14335)
  • [20] R. Nevanlinna, Über beschränkte analytisch Funktionen, Ann. Acad. Sci. Fenn. Ser. A 32 (1929), No. 7.
  • [21] C. Carathéodory and L. Fejér, Über den Zusammenhang der Extremen von harmonischen Funktimen mit ihren Koeffizientan und über den Picard-Landan'schen Satz, Rend. Circ. Mat. Palermo 32 (1911), 218-239.
  • [22] C. Fefferman and E. M. Stein, $ {H^p}$ spaces of several variables, Acta Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • [23] D. A. Stegenga, Bounded Toeplitz operators on $ {H^1}$ and applications of the duality between $ {H^1}$ and the functions of bounded mean oscillation, Amer. J. Math. 98 (1976), 573-589. MR 0420326 (54:8340)
  • [24] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 24 #A1348. MR 0131498 (24:A1348)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46J15, 30A98

Retrieve articles in all journals with MSC: 46J15, 30A98


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0433213-5
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society