Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hopf invariants and Browder's work on the Kervaire invariant problem


Author: Warren M. Krueger
Journal: Trans. Amer. Math. Soc. 228 (1977), 85-97
MSC: Primary 55H15; Secondary 57D90
DOI: https://doi.org/10.1090/S0002-9947-1977-0431171-0
MathSciNet review: 0431171
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we calculate certain functional differentials in the Adams spectral sequence converging to Wu cobordism whose values may be thought of as Hopf invariants. These results are applied to reobtain Browder's characterization: if $ q + 1 = {2^k}$, there is a 2q dimensional manifold of Kervaire invariant one if and only if $ h_k^2$ survives to $ {E_\infty }({S^0})$.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Stable homotopy and generalized homology, Math. Lecture Notes, Univ. of Chicago, Chicago, 1971.
  • [2] W. Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. (2) 90 (1969), 157-186. MR 40 #4963. MR 0251736 (40:4963)
  • [3] W. M. Krueger, Generalized Steenrod-Hopf invariants for stable homotopy theory, Proc. Amer. Math. Soc. 39 (1973), 609-615. MR 0385860 (52:6719)
  • [4] -, Cohomology operations and the Adams spectral sequence (unpublished).
  • [5] -, Peterson-Stein formulas in the Adams spectral sequence, Proc. Amer. Math. Soc. 56 (1976), 377-379. MR 0400229 (53:4064)
  • [6] A. L. Liulevicius, A proof of Thom's theorem, Comment. Math. Helv. 37 (1962/63), 121-131. MR 26 #3058. MR 0145527 (26:3058)
  • [7] -, Homology comodules, Trans. Amer. Math. Soc. 134 (1968), 375-382. MR 40 #4947. MR 0251720 (40:4947)
  • [8] M. Mahowald and M. Tangora, Some differentials in the Adams spectral sequence. Topology 6 (1967), 349-378. MR 0214072 (35:4924)
  • [9] J.-P. Meyer, Functional cohomology operations and relations, Amer. J. Math. 87 (1965), 649-683. MR 32 #1701. MR 0184228 (32:1701)
  • [10] J. W. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171. MR 20 #6092. MR 0099653 (20:6092)
  • [11] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies, no. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [12] R. Stong, Relations among Stiefel-Whitney classes, Proc. Amer. Math. Soc. 15 (1964), 151-153. MR 28 #2542. MR 0159325 (28:2542)
  • [13] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15, 890. MR 0061823 (15:890a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55H15, 57D90

Retrieve articles in all journals with MSC: 55H15, 57D90


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0431171-0
Keywords: Adams spectral sequence, framed manifold, Wu class, Kervaire invariant
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society