Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A simpler approximation to $ QX$

Author: Jeffrey L. Caruso
Journal: Trans. Amer. Math. Soc. 265 (1981), 163-167
MSC: Primary 55P35; Secondary 55P47
MathSciNet review: 607114
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: McDuff's construction $ {C^ \pm }(M)$ of a space of positive and negative particles is modified to a space $ {C^ \pm }({R^\infty },X)$, which is weakly homotopy equivalent to $ {\Omega ^\infty }{\Sigma ^\infty }X$, for a locally equi-connected, nondegenerately based space $ X$.

References [Enhancements On Off] (What's this?)

  • [1] J. Caruso and S. Waner, An approximation to $ {\Omega ^n}{\Sigma ^n}X$, Trans. Amer. Math. Soc. 265 (1981), 147-162. MR 607113 (82i:55006)
  • [2] F. Cohen, J. P. May and L. Taylor, Splittings of certain spaces CX, Math. Proc. Cambridge Philos. Soc. 84 (1978), 465-496. MR 503007 (80a:55010)
  • [3] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. MR 0193606 (33:1824)
  • [4] E. Dyer and S. Eilenberg, An adjunction theorem for locally equiconnected spaces, Pacific J. Math. 41 (1955), 669-685. MR 0319143 (47:7689)
  • [5] J. P. May, The homotopical foundations of algebraic topology, Monograph London Math. Soc., Academic Press (in preparation).
  • [6] -, The geometry of iterated loop spaces, Lecture Notes in Math., vol. 271, Springer-Verlag, Berlin and New York, 1972. MR 0420610 (54:8623b)
  • [7] D. McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91-107. MR 0358766 (50:11225)
  • [8] G. Segal, Configuration spaces and iterated loop spaces, Invent. Math. 21 (1973), 213-221. MR 0331377 (48:9710)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P35, 55P47

Retrieve articles in all journals with MSC: 55P35, 55P47

Additional Information

Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society